Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731398

RESUMO

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Assuntos
Trifosfato de Adenosina , Carbono , Ácido Cítrico , Polietilenoimina , Proteínas Quinases , Pontos Quânticos , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Carbono/química , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Polietilenoimina/química , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo
2.
Adv Exp Med Biol ; 1395: 335-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527658

RESUMO

Alzheimer's disease (AD) is a consequence of complex interactions of age-related neurodegeneration and vascular-associated pathologies, affecting more than 44 million people worldwide. For the last decade, it has been suggested that chronic brain hypoperfusion and consequent hypoxia play a direct role in the pathogenesis of AD. However, current treatments of AD have not focused on restoring or improving microvascular perfusion. In a previous study, we showed that drag reducing polymers (DRP) enhance cerebral blood flow and tissue oxygenation. We hypothesised that haemorheologic enhancement of cerebral perfusion by DRP would be useful for treating Alzheimer's disease. We used double transgenic B6C3-Tg(APPswe, PSEN1dE9) 85Dbo/Mmjax AD mice. DRP or vehicle (saline) was i.v. injected every week starting at four months of age till 12 months of age (10 mice/group). In-vivo 2-photon laser scanning microscopy was used to evaluate amyloid plaques development, cerebral microcirculation, and tissue oxygen supply/metabolic status (NADH autofluorescence). The imaging sessions were repeated once a month till 12 months of age. Statistical analyses were done by independent Student's t-test or Kolmogorov-Smirnov tests where appropriate. Differences between groups and time were determined using a two-way repeated measures ANOVA analysis for multiple comparisons and post hoc testing using the Mann-Whitney U test. In the vehicle group, numerous plaques completely formed in the cortex by nine months of age. The development of plaques accumulation was accompanied by cerebral microcirculation disturbances, reduction in tissue oxygen supply and metabolic impairment (NADH increase). DRP mitigated microcirculation and tissue oxygen supply reduction - microvascular perfusion was 29.5 ± 5%, and tissue oxygen supply was 22 ± 4% higher than in the vehicle group (p < 0.05). In the DRP group, amyloid plaques deposition was substantially less than in the vehicle group (p < 0.05). Thus, rheological enhancement of blood flow by DRP is associated with reduced rate of beta amyloid plaques deposition in AD mice.


Assuntos
Doença de Alzheimer , Placa Amiloide , Polímeros , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Circulação Cerebrovascular , Modelos Animais de Doenças , Hipóxia/patologia , Camundongos Transgênicos , NAD/metabolismo , Oxigênio , Perfusão , Placa Amiloide/patologia , Polímeros/metabolismo , Polímeros/farmacologia
3.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328748

RESUMO

The impact of oral microbial dysbiosis on Alzheimer's disease (AD) remains controversial. Building off recent studies reporting that various microbes might directly seed or promote amyloid ß (Aß) deposition, we evaluated the effects of periodontal bacteria (Porphyromonas gingivalis, Treponema denticola) and supragingival commensal (Streptococcus gordonii) oral bacterial infection in the APP-transgenic CRND8 (Tg) mice model of AD. We tracked bacterial colonization and dissemination, and monitored effects on gliosis and amyloid deposition. Chronic oral infection did not accelerate Aß deposition in Tg mice but did induce alveolar bone resorption, IgG immune response, and an intracerebral astrogliosis (GFAP: glial fibrillary acidic protein). In contrast, intracerebral inoculation of live but not heat-killed P. gingivalis increased Aß deposition and Iba-1 (ionized calcium-binding adaptor-1) microgliosis after 8 weeks of bacterial infection but not at 4 days. These data show that there may be differential effects of infectious microbes on glial activation and amyloid deposition depending on the species and route of inoculation, and thereby provide an important framework for future studies. Indeed, these studies demonstrate marked effects on amyloid ß deposition only in a fairly non-physiologic setting where live bacteria is injected directly into the brain.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Gliose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo , Porphyromonas gingivalis/metabolismo
4.
Cell Mol Neurobiol ; 41(5): 1019-1029, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33025416

RESUMO

Brain tumors are hard to treat with the currently available therapy. The major obstacle in the treatment of brain tumors is the lack of therapeutic strategies capable to penetrate the blood-brain barrier (BBB). The BBB is an endothelial interface that separates the brain from the circulatory blood system and prevents the exposure of the central nervous system (CNS) to circulating toxins and potentially harmful compounds. Unfortunately, the BBB prevents also the penetration of therapeutic compounds into the brain. We present here a drug-delivery liposomal carrier, conjugated to a peptide inserted in the liposomal membrane, which is putatively recognized by BBB transporters. The peptide is a short sequence of 5 amino acids (RERMS) present in the amyloid precursor protein (APP). This APP-targeted liposomal system was designed specifically for transporting compounds with anti-cancer activity via the BBB into the brain in an effective manner. This drug-delivery liposomal carrier loaded with the anti-cancer compounds temozolomide (TMZ), curcumin, and doxorubicin crossed the BBB in an in vitro model as well as in vivo (mice model). In the in vitro model, the targeted liposomes crossed the BBB model fourfold higher than the non-targeted liposomes. Labeled targeted liposomes penetrated the brain in vivo 35% more than non-targeted liposomes. Treatment of mice that underwent intracranial injection of human U87 glioblastoma, with the targeted liposomes loaded with the three tested anti-cancer agents, delayed the tumor growth and prolonged the mice survival in a range of 45% -70%. It appears that the targeted liposomal drug-delivery system enables better therapeutic efficacy in a SCID mouse model of glioblastoma compared to the corresponding non-targeted liposomes and the free compounds.


Assuntos
Precursor de Proteína beta-Amiloide/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fragmentos de Peptídeos/administração & dosagem , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Antineoplásicos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Portadores de Fármacos/metabolismo , Humanos , Lipossomos , Camundongos , Camundongos SCID , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Wistar , Suínos , Resultado do Tratamento
5.
Brain Behav Immun ; 98: 1-12, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391814

RESUMO

In line with the strong association between periodontitis and Alzheimer's disease (AD) clinically, preclinical studies have shown that systemic exposure to Porphyromonas gingivalis (Pg) initiates AD pathologies. However, the involvement of periodontitis in promoting AD pathologies is unclear. In the present study, we provided evidence that chronic systemic exposure to lipopolysaccharide derived from Pg (PgLPS, 1 mg/kg, daily, intraperitoneally) prompted neuroinflammation and tau hyperphosphorylation in 10-month-old of amyloid precursor protein (APP) knock-in mice, a model of AD, carrying the Swedish and Beyreuther/Iberian mutation (APPNL-F/NL-F). The learning and memory function were assessed using the passive avoidance test. The production of APP, Amyloid (A)ß1-42, cytokines, synaptic proteins and the activation of glycogen synthase kinase (GSK)-3ß as well as phosphorylation of tau were analyzed by immunohistochemistry, Western blotting or an enzyme-linked immunosorbent assay (ELISA) in the cortex of APPNL-F/NL-F mice. We found that systemic exposure of PgLPS for three consecutive weeks induced learning and memory deficits with significantly reduced postsynaptic density protein (PSD95). Increased hyperphosphorylation of tau in multiple residues, including Ser202, Thr231 and Ser396, but not the accumulation of Aß1-42 was detected in the neurons of APPNL-F/NL-F mice. Furthermore, PgLPS increased the GSK3ß activity by reducing its phosphorylation of the serine residue at position 9 (Ser9) and promoted neuroinflammation by increasing the expression of interleukin-1ß (IL-1ß) and tumor necrosis factor (TNF-α) while decreasing that of interleukin-10 (IL-10) and transforming growth factor (TGFß) in the cortex of APPNL-F/NL-F mice. Moreover, the PgLPS-increased GSK3ß activity was detected in both microglia and neurons, while the PgLPS-increased TNF-α expression was mainly detected in the microglia in the cortex of APPNL-F/NL-F mice. In in vitro studies, PgLPS (1 µg/ml) stimulation increased the mRNA and protein level of TNF-α in MG6 microglia, which were significantly inhibited by the GSK3ß-specific inhibitor TWS119. In contrast, the tau hyperphosphorylation and activation of GSK3ß in N2a neurons were enhanced after treatment with conditioned medium from PgLPS-stimulated microglia, which was attenuated after pre-treatment with TNF-α inhibitor. Taken together, these findings indicate that GSK3ß is involved in prompting microglia (TNF-α)-dependent tau hyperphosphorylation in neurons, resulting in learning and memory deficits in APPNL-F/NL-F mice without changes in the Aß expression during chronic systemic exposure to PgLPS. We propose that dampening GSK3ß activation may help delay the periodontitis-promoted pathological progression of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neuroinflamatórias , Fosforilação , Porphyromonas gingivalis , Proteínas tau/metabolismo
6.
Biochemistry ; 55(7): 985-8, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26859249

RESUMO

The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.


Assuntos
Precursor de Proteína beta-Amiloide/química , Caveolina 3/química , Microdomínios da Membrana/química , Modelos Moleculares , Proteínas da Mielina/química , Fragmentos de Peptídeos/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Colesterol/química , Colesterol/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodaminas/química , Esfingomielinas/química , Esfingomielinas/metabolismo , Lipossomas Unilamelares
7.
EMBO Rep ; 14(11): 1017-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999102

RESUMO

The polymorphic ß-amyloid lesions present in individuals with Alzheimer's disease are collectively known as cerebral ß-amyloidosis. Amyloid precursor protein (APP) transgenic mouse models similarly develop ß-amyloid depositions that differ in morphology, binding of amyloid conformation-sensitive dyes, and Aß40/Aß42 peptide ratio. To determine the nature of such ß-amyloid morphotypes, ß-amyloid-containing brain extracts from either aged APP23 brains or aged APPPS1 brains were intracerebrally injected into the hippocampus of young APP23 or APPPS1 transgenic mice. APPPS1 brain extract injected into young APP23 mice induced ß-amyloid deposition with the morphological, conformational, and Aß40/Aß42 ratio characteristics of ß-amyloid deposits in aged APPPS1 mice, whereas APP23 brain extract injected into young APP23 mice induced ß-amyloid deposits with the characteristics of ß-amyloid deposits in aged APP23 mice. Injecting the two extracts into the APPPS1 host revealed a similar difference between the induced ß-amyloid deposits, although less prominent, and the induced deposits were similar to the ß-amyloid deposits found in aged APPPS1 hosts. These results indicate that the molecular composition and conformation of aggregated Aß in APP transgenic mice can be maintained by seeded conversion.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Animais , Encéfalo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Polímeros/farmacologia , Presenilina-1/metabolismo , Análise Espectral , Tiofenos/farmacologia
8.
CNS Neurosci Ther ; 30(3): e14460, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718506

RESUMO

BACKGROUND: Oxidative stress is an early event in the development of Alzheimer's disease (AD) and maybe a pivotal point of interaction governing AD pathogenesis; oxidative stress contributes to metabolism imbalance, protein misfolding, neuroinflammation and apoptosis. Excess reactive oxygen species (ROS) are a major contributor to oxidative stress. As vital sources of ROS, mitochondria are also the primary targets of ROS attack. Seeking effective avenues to reduce oxidative stress has attracted increasing attention for AD intervention. METHODS: We developed liposome-packaged Ligustilide (LIG) and investigated its effects on mitochondrial function and AD-like pathology in the APPswe/PS1dE9 (APP/PS1) mouse model of AD, and analyzed possible mechanisms. RESULTS: We observed that LIG-loaded liposome (LIG-LPs) treatment reduced oxidative stress and ß-amyloid (Aß) deposition and mitigated cognitive impairment in APP/PS1 mice. LIG management alleviated the destruction of the inner structure in the hippocampal mitochondria and ameliorated the imbalance between mitochondrial fission and fusion in the APP/PS1 mouse brain. We showed that the decline in cAMP-dependent protein kinase A (PKA) and A-kinase anchor protein 1 for PKA (AKAP1) was associated with oxidative stress and AD-like pathology. We confirmed that LIG-mediated antioxidant properties and neuroprotection were involved in upregulating the PKA/AKAP1 signaling in APPswe cells in vitro. CONCLUSION: Liposome packaging for LIG is relatively biosafe and can overcome the instability of LIG. LIG alleviates mitochondrial dysfunctions and cognitive impairment via the PKA/AKAP1 signaling pathway. Our results provide experimental evidence that LIG-LPs may be a promising agent for AD therapy.


Assuntos
4-Butirolactona/análogos & derivados , Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Lipossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Cognição , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
9.
J Control Release ; 365: 583-601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048963

RESUMO

The complex etiologies and mechanisms of Alzheimer's disease (AD) underscore the importance for devising multitarget drugs to achieve effective therapy. MicroRNAs (miRNAs) are capable of concurrently regulating the expression of multiple proteins by selectively targeting disease- associated genes in a sequence-specific fashion. Nonetheless, as RNA-based drugs, their stability in the circulation and capacity of traversing the blood-brain barrier (BBB) is largely compromised, thereby limiting their potential clinical applications. In this study, we formulated the nanoliposomes encapsulating polyethyleneimine (PEI)/miR-195 complex (DPMT@PEI/miR-195) that was engineered through dual modifications to contain P-aminophenyl-alpha-d-mannopyranoside (MAN) and cationic cell-penetrating peptide (TAT). DPMT@PEI/miR-195 exhibited the enhanced BBB- and cell membrane penetrating capability. As expected, we observed that DPMT@PEI/miR-195 administered through intravenous tail injection of produced greater effectiveness than donepezil and the same range of effect as aducanumab in alleviating the cognitive decline in 7-month-old APP/PS1 mice. Moreover, the combination treatment with DPMT@PEI/miR-195 and donepezil effectively ameliorated the deterioration of cognition in 16-month-old APP/PS1 mice, with enhanced effects than either DPMT@PEI/miR-195 or donepezil alone. Furthermore, DPMT@PEI/miR-195 effectively attenuated the positive signals of Aß, AT8, and CD68 in APP/PS1 mice without notable side effects. Our findings indicate DPMT@PEI/miR-195 as a promising potentially new agent or approach for the prophylaxis and treatment of early and advanced stages of Alzheimer's disease.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Camundongos , Animais , Lactente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Lipossomos/uso terapêutico , Precursor de Proteína beta-Amiloide/metabolismo , Donepezila/uso terapêutico , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/uso terapêutico , MicroRNAs/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
10.
J Oral Biosci ; 66(2): 329-338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521152

RESUMO

OBJECTIVES: Many patients with Alzheimer's disease (AD) experience behavioral and psychological symptoms of dementia (BPSD), which significantly affect their quality of life. It is known that 5-Hydroxytryptamine (5-HT) plays a crucial role in the development of BPSD. While the relationship between tooth loss and AD symptoms has been acknowledged, the aspect of aggression has not been focused on until now. Despite the established importance of 5-HT in BPSD, how tooth loss is related to the exacerbation of AD symptoms, especially in terms of aggression, remains largely unexplored. Although nutritional status is known to influence the progression of dementia, the specific effect of tooth loss on peripheral symptoms, notably aggression, is not well understood. METHODS: In our study, we conducted maxillary molar extractions in aged C57BL/6J and AppNL-G-F mice and observed their condition over a 3-month period. During this time, we documented significant behavioral and genetic differences between mice in the control groups and mice that underwent tooth extraction. Notably, mice that underwent tooth extraction exhibited a considerable decline in cognitive function and increased in aggression 3 months after tooth extraction compared with the control groups (C57BL/6J and AppNL-G-Fmice). RESULTS: Our findings suggest that molar loss may lead to reduced 5-HT levels in the hippocampus, possibly mediated by the trigeminal nerve, contributing to the development of aggression and BPSD in AD. CONCLUSION: This study sheds light on the intricate relationships between oral health, 5-HT, and AD symptoms, offering valuable insights into potential therapeutic avenues for managing BPSD in patients with dementia.


Assuntos
Agressão , Camundongos Endogâmicos C57BL , Perda de Dente , Animais , Camundongos , Perda de Dente/genética , Perda de Dente/psicologia , Agressão/psicologia , Agressão/fisiologia , Comportamento Animal , Modelos Animais de Doenças , Demência/genética , Demência/psicologia , Camundongos Transgênicos , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
11.
Biomacromolecules ; 14(10): 3570-80, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24004423

RESUMO

Poly(propylene imine) (PPI) glycodendrimers are promising candidates as drug carriers and antiamyloidogenic and antiprionic agents. In this study the anti-ß-amyloid capacity of PPI glycodendrimers of the fourth and fifth generations was investigated in vitro and in vivo. We assessed distinct PPI glycodendrimers including G4mDS and G5mDS, with electroneutral maltose shell, and G4mOS and G4m-IIIOS, with cationic maltose or maltotriose shell. Our results show that in vitro PPI maltose dendrimers reduce the toxicity of Aß(1-42). However, only the electroneutral maltose dendrimers G4mDS and G5mDS reduce the toxicity of Alzheimer's disease brain extracts in SH-SY5Y neuroblastoma cells. PPI maltose dendrimers with electroneutral or cationic surface penetrate the cytoplasm of cultured cells, and they reach the brain when administered intranasally. Both cationic G4mOS and electroneutral G4mDS are able to modify the total burden of ß-amyloid in APP/PS1 mice. The studied dendrimers did not reverse memory impairment in APP/PS1 mice following chronic administration; moreover, cationic G4mOS caused cognitive decline in nontransgenic mice. In spite of the capacity of G4mDS and G4mOS to cross the blood-brain barrier and modulate Aß aggregation in APP/PS1 mice, further studies are needed to learn how to reduce the harmful effects of maltose dendrimers in vivo.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Dendrímeros/farmacologia , Glicoconjugados/farmacologia , Polipropilenos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Administração Intranasal , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/administração & dosagem , Dendrímeros/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glicoconjugados/administração & dosagem , Glicoconjugados/química , Humanos , Masculino , Maltose/química , Camundongos , Camundongos Transgênicos , Tamanho da Partícula , Polipropilenos/administração & dosagem , Polipropilenos/química , Proteínas Serina-Treonina Quinases/genética , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
12.
Hum Mol Genet ; 19(16): 3254-65, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20538880

RESUMO

Missense mutations (K141N and K141E) in the alpha-crystallin domain of the small heat shock protein HSPB8 (HSP22) cause distal hereditary motor neuropathy (distal HMN) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). The mechanism through which mutant HSPB8 leads to a specific motor neuron disease phenotype is currently unknown. To address this question, we compared the effect of mutant HSPB8 in primary neuronal and glial cell cultures. In motor neurons, expression of both HSPB8 K141N and K141E mutations clearly resulted in neurite degeneration, as manifested by a reduction in number of neurites per cell, as well as in a reduction in average length of the neurites. Furthermore, expression of the K141E (and to a lesser extent, K141N) mutation also induced spheroids in the neurites. We did not detect any signs of apoptosis in motor neurons, showing that mutant HSPB8 resulted in neurite degeneration without inducing neuronal death. While overt in motor neurons, these phenotypes were only very mildly present in sensory neurons and completely absent in cortical neurons. Also glial cells did not show an altered phenotype upon expression of mutant HSPB8. These findings show that despite the ubiquitous presence of HSPB8, only motor neurons appear to be affected by the K141N and K141E mutations which explain the predominant motor neuron phenotype in distal HMN and CMT2L.


Assuntos
Proteínas de Choque Térmico HSP20/metabolismo , Neurônios Motores/metabolismo , Proteínas Musculares/metabolismo , Mutação , Neuritos/metabolismo , Substituição de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apoptose , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Dano ao DNA , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Chaperonas Moleculares , Neurônios Motores/patologia , Proteínas Musculares/genética , Neuritos/patologia , Neuroglia/metabolismo , Ratos , Ratos Wistar , Transfecção
13.
Int J Biol Macromol ; 219: 1180-1196, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36030976

RESUMO

Biodegradable poly(lactic-co-glycolic acid)(PLGA) nanoparticles have been used extensively in delivering drugs to target tissues due to their excellent biocompatibility. Evidence suggests that PLGA-conjugated drugs/agents can attenuate pathology in cellular/animal models of Alzheimer's disease (AD), which is initiated by increased level/aggregation of amyloid ß (Aß) peptide generated from amyloid precursor protein (APP). The beneficial effects were attributed to conjugated-drugs rather than to PLGA nanoparticles. Interestingly, we recently reported that PLGA without any drug/agent (native PLGA) can suppress Aß aggregation/toxicity. However, very little is known about the internalization, subcellular localization or effects of PLGA in neurons. In this study, using primary mouse cortical neurons, we first showed that native PLGA is internalized by an energy-mediated clathrin-dependent/-independent pathway and is localized in endosomal-lysosomal-autophagic vesicles. By attenuating internalization, PLGA can protect neurons against Aß-mediated toxicity. Additionally, PLGA treatment altered expression profiles of certain AD-associated genes and decreased the levels of APP, its cleaved products α-/ß-CTFs and Aß peptides in mouse as well as iPSC-derived neurons from control and AD patients. Collectively, these results suggest that native PLGA not only protects neurons against Aß-induced toxicity but also influences the expression of AD-related genes/proteins - highlighting PLGA's implication in normal and AD-related pathology.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Clatrina , Camundongos , Neurônios , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
14.
ACS Chem Neurosci ; 13(14): 2154-2163, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35818957

RESUMO

Misfolding and accumulation of amyloid-ß (Aß) to form senile plaques are the main neuropathological signatures of Alzheimer's disease (AD). Decreasing Aß production, inhibiting Aß aggregation, and clearing Aß plaques are thus considered an important strategy for AD treatment. However, numerous drugs cannot enter the AD clinical trials due to unsatisfactory biocompatibility, poor blood-brain barrier penetration, little biomarker impact, and/or low therapeutic indicators. Here, a pair of chiral aspartic acid-modified 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (l- and d-Asp-DPPE) are prepared to build stabilized chiral liposomes. We find that both l- and d-liposomes are able to rescue Aß aggregation-induced apoptosis, oxidative stress, and calcium homeostasis, in which the effect of d-liposomes is more obvious than that of l-ones. Furthermore, in AD model mice (APPswe/PS1d9 double-transgenic mice), chiral liposomes not only show biosafety but also strongly improve cognitive deficits and reduce Aß deposition in the brain. Our results suggest that chiral liposomes, particularly, d-liposomes, could be a potential therapeutic approach for AD treatment. This study opens new horizons by showing that liposomes will be used for drug development in addition to delivery and targeting functions.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico , Encéfalo/metabolismo , Modelos Animais de Doenças , Lipossomos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Fosfolipídeos , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
15.
Curr Alzheimer Res ; 19(4): 317-329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579170

RESUMO

BACKGROUND: Alzheimer's disease (AD) is initiated by aberrant accumulation of amyloid beta (Aß) protein in the brain parenchyma. The microenvironment surrounding amyloid plaques is characterized by the swelling of presynaptic terminals (dystrophic neurites) associated with lysosomal dysfunction, microtubule disruption, and impaired axonal transport. Aß-induced plasma membrane damage and calcium influx could be potential mechanisms underlying dystrophic neurite formation. OBJECTIVE: We tested whether promoting membrane integrity by brain administration of a safe FDA approved surfactant molecule poloxamer-188 (P188) could attenuate AD pathology in vivo. METHODS: Three-month-old 5XFAD male mice were administered several concentrations of P188 in the brain for 42 days with mini-osmotic pumps. After 42 days, mice were euthanized and assessed for amyloid pathology, dystrophic neurites, pathogenic microglia activation, tau phosphorylation, and lysosomal / vesicular trafficking markers in the brain. RESULTS: P188 was lethal at the highest concentration of 10mM. Lower concentrations of P188 (1.2, 12, and 120µM) were well tolerated. P188 increased brain Aß burden, potentially through activation of the γ-secretase pathway. Dystrophic neurite pathology was exacerbated in P188 treated mice as indicated by increased LAMP1 accumulation around Aß deposits. Pathogenic microglial activation was increased by P188. Total tau levels were decreased by P188. Lysosomal enzyme cathepsin D and calciumdependent vesicular trafficking regulator synaptotagmin-7 (SYT7) were dysregulated upon P188 administration. CONCLUSION: P188 brain delivery exacerbated amyloid pathology, dystrophic neurites, and pathogenic microglial activation in 5XFAD mice. These effects correlated with lysosomal dysfunction and dysregulation of plasma membrane vesicular trafficking. P188 is not a promising therapeutic strategy against AD pathogenesis.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Poloxâmero/metabolismo , Poloxâmero/toxicidade
16.
J Neurosci ; 29(7): 1977-86, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228952

RESUMO

The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/genética , Neprilisina/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação da Expressão Gênica/genética , Humanos , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neprilisina/genética , Polímeros/metabolismo
17.
Biochem Biophys Res Commun ; 393(3): 404-9, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20138836

RESUMO

It has been suggested that cholesterol may modulate amyloid-beta (Abeta) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (beta-amyloid precursor protein (APP), beta-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Abeta formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1(-/-) cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, gamma-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Abeta occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Células CHO , Proteínas de Transporte/genética , Fracionamento Celular , Linhagem Celular , Colesterol/química , Cricetinae , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Microdomínios da Membrana/química , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Octoxinol/química
18.
J Alzheimers Dis ; 76(4): 1443-1459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32651317

RESUMO

BACKGROUND: The mesencephalic trigeminal nucleus (Vmes) is not only anatomically adjacent to the locus coeruleus (LC) but is also tightly associated with the function of the LC. The LC can be the first area in which Alzheimer's disease (AD) develops, although it is unclear how LC neuronal loss occurs. OBJECTIVE: We investigated whether neuronal death in the Vmes can be spread to adjacent LC in female triple transgenic (3×Tg)-AD mice, how amyloid-ß (Aß) is involved in LC neuronal loss, and how this neurodegeneration affects cognitive function. METHODS: The molars of 3×Tg-AD mice were extracted, and the mice were reared for one week to 4 months. Immunohistochemical analysis, and spatial learning/memory assessment using the Barnes maze were carried out. RESULTS: In 4-month-old 3×Tg-AD mice, aggregated cytotoxic Aß42 was found in granules in Vmes neurons. Neuronal death in the Vmes occurred after tooth extraction, resulting in the release of cytotoxic Aß42 and an increase in CD86 immunoreactive microglia. Released Aß42 damaged the LC, in turn inducing a significant reduction in hippocampal neurons in the CA1 and CA3 regions receiving projections from the LC. Based on spatial learning/memory assessment, after the tooth extraction in the 4-month-old 3×Tg-AD mice, increased latency was observed in 5-month-old 3×Tg-AD mice 1 month after tooth extraction, which is similar increase of latency observed in control 8-month-old 3×Tg-AD mice. Measures of cognitive deficits suggested an earlier shift to dementia-like behavior after tooth extraction. CONCLUSION: These findings suggest that tooth extraction in the predementia stage can trigger the spread of neurodegeneration from the Vmes, LC, and hippocampus and accelerate the onset of dementia.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Neurônios/metabolismo , Perda de Dente/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Disfunção Cognitiva/complicações , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Neurônios/patologia , Perda de Dente/metabolismo , Proteínas tau/metabolismo
19.
J Neuropathol Exp Neurol ; 68(5): 441-55, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19525893

RESUMO

We investigated the contribution of Schwann cell-derived ciliary neurotrophic factor (CNTF) to the pathogenesis of Charcot-Marie-Tooth disease type 1A (CMT1A) and addressed the question as to whether it plays a role in the development of axonal damage observed in the disease, with aging. Ciliary neurotrophic factor was underexpressed in experimental CMT1A but not in other models of hereditary neuropathies. Sciatic nerve crush experiments and dosage of CNTF at different time points showed that expression of this trophic factor remained significantly lower in CMT1A rats than in normal controls; moreover, in uninjured CMT1A sciatic nerves CNTF levels further decreased with ageing, thus paralleling the molecular signs of axonal impairment, that is increased expression of non-phosphorylated neurofilaments and amyloid precursor protein. Administration of CNTF to dorsal root ganglia cultures reduced dephosphorylation of neurofilaments in CMT1A cultures, without improving demyelination. Taken together, these results provide further evidence that the production of CNTF by Schwann cells is markedly reduced in CMT1A. Moreover, the observations suggest that trophic support to the axon is impaired in CMT1A and that further studies on the therapeutic use of trophic factors or their derivatives in experimental and human CMT1A are warranted.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas da Mielina/genética , Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/patologia , Biópsia , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/farmacologia , Modelos Animais de Doenças , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática/métodos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas de Neurofilamentos , Ratos , Ratos Transgênicos , Fator de Transcrição STAT3/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Fatores de Tempo
20.
ACS Chem Neurosci ; 10(11): 4522-4534, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31577904

RESUMO

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) and amyloid-ß (Aß) protein are closely associated with type 2 diabetes mellitus (T2DM) and Alzheimer's disease, respectively. Inhibitors of amyloid peptides include short peptides, aromatic organic molecules, nanoparticles, and even metal compounds. Sesquiterpenoid artemisinins are widely used in anti-malaria treatments, and they may modulate glucose homeostasis against diabetes. However, the antidiabetic mechanism of these compounds remains unclear. In this work, four compounds, namely, artemisinin (1), dihydroartemisinin (2), artesunate (3), and artemether (4), were exploited to inhibit the assembly behavior of hIAPP and compared with that of Aß. Although structurally distinct from other aromatic inhibitors of amyloid peptides, these sesquiterpenoids effectively altered the two peptides' fibril morphologies and disaggregated the mature fibrils mostly to the monomers. The interaction of artemisinins with the two peptides demonstrated a spontaneous, exothermic, and entropy-driven binding process predominantly through hydrophobic and hydrogen bonding interactions. Moreover, they reversed cytotoxicity and membrane leakage by reducing peptides' oligomerization. The results suggested that these compounds had better inhibition and disaggregation capability against hIAPP than against Aß. Furthermore, the effects of these compounds' structural modification on the amyloid fibril formation of the two peptides were observed. The molecular screening offered a new perspective for artemisinins as promising inhibitors against amyloidosis related diseases.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Artemisininas/farmacologia , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Artemisininas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Membranas Artificiais , Simulação de Dinâmica Molecular , Estrutura Molecular , Fármacos Neuroprotetores/química , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Ratos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA