Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(43): 17876-17884, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28893910

RESUMO

The influenza A and B viruses are the primary cause of seasonal flu epidemics. Common to both viruses is the M2 protein, a homotetrameric transmembrane proton channel that acidifies the virion after endocytosis. Although influenza A M2 (AM2) and B M2 (BM2) are functional analogs, they have little sequence homology, except for a conserved HXXXW motif, which is responsible for proton selectivity and channel gating. Importantly, BM2 contains a second titratable histidine, His-27, in the tetrameric transmembrane domain that forms a reverse WXXXH motif with the gating tryptophan. To understand how His-27 affects the proton conduction property of BM2, we have used solid-state NMR to characterize the pH-dependent structure and dynamics of His-27. In cholesterol-containing lipid membranes mimicking the virus envelope, 15N NMR spectra show that the His-27 tetrad protonates with higher pKa values than His-19, indicating that the solvent-accessible His-27 facilitates proton conduction of the channel by increasing the proton dissociation rates of His-19. AM2 is inhibited by the amantadine class of antiviral drugs, whereas BM2 has no known inhibitors. We measured the N-terminal interhelical separation of the BM2 channel using fluorinated Phe-5. The interhelical 19F-19F distances show a bimodal distribution of a short distance of 7 Å and a long distance of 15-20 Å, indicating that the phenylene rings do not block small-molecule entry into the channel pore. These results give insights into the lack of amantadine inhibition of BM2 and reveal structural diversities in this family of viral proton channels.


Assuntos
Vírus da Influenza B/química , Canais Iônicos/química , Membranas Artificiais , Proteínas da Matriz Viral/química , Motivos de Aminoácidos , Vírus da Influenza B/genética , Vírus da Influenza B/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
2.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468881

RESUMO

Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites.IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly.


Assuntos
Vírus Hendra/genética , Multimerização Proteica , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Virossomos/metabolismo , Linhagem Celular , Endossomos/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas da Matriz Viral/metabolismo , Virossomos/genética
3.
J Gen Virol ; 98(4): 563-576, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28056216

RESUMO

Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.


Assuntos
Transporte Ativo do Núcleo Celular , Henipavirus/genética , Henipavirus/fisiologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Animais , Henipavirus/isolamento & purificação , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Sinais de Localização Nuclear , Transporte Proteico , Virossomos/genética , Virossomos/metabolismo
4.
J Virol ; 90(7): 3650-60, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792745

RESUMO

UNLABELLED: Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE: Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein interactions which enable efficient packaging of encapsidated viral RNA genomes into budding virions. In this study, we have defined regions near the C-terminal ends of paramyxovirus nucleocapsid proteins that are important for matrix protein interaction and that are sufficient to direct a foreign protein into budding particles. These results advance our basic understanding of paramyxovirus genome packaging interactions and also have implications for the potential use of virus-like particles as protein delivery tools.


Assuntos
Motivos de Aminoácidos , Vírus da Caxumba/fisiologia , Vírus Nipah/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Parainfluenza 5/fisiologia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Linhagem Celular , Humanos , Luciferases de Renilla/metabolismo , Vírus da Caxumba/genética , Vírus Nipah/genética , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Vírus da Parainfluenza 5/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas da Matriz Viral/química , Virossomos/metabolismo , Liberação de Vírus
5.
J Gen Virol ; 97(8): 1853-1864, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145752

RESUMO

The cytoplasmic tails of some coronavirus (CoV) spike (S) proteins contain an endoplasmic reticulum retrieval signal (ERRS) that can retrieve S proteins from the Golgi to the endoplasmic reticulum (ER); this process is thought to accumulate S proteins at the CoV budding site, the ER-Golgi intermediate compartment (ERGIC), and to facilitate S protein incorporation into virions. However, we showed previously that porcine epidemic diarrhoea CoV S proteins lacking the ERRS were efficiently incorporated into virions, similar to the original virus. Thus, the precise role of the ERRS in virus assembly remains unclear. Here, the roles of the S protein ERRS in severe acute respiratory syndrome CoV (SARS-CoV) intracellular trafficking and S incorporation into virus-like particles (VLPs) are described. Intracellular trafficking and indirect immunofluorescence analysis suggested that when M protein was present, wild-type S protein (wtS) could be retained in the pre- and post-medial Golgi compartments intracellularly and co-localized with M protein in the Golgi. In contrast, mutant S protein lacking the ERRS was distributed throughout the ER and only partially co-localized with M protein. Moreover, the intracellular accumulation of mutant S protein, particularly at the post-medial Golgi compartment, was significantly reduced compared with wtS. A VLP assay suggested that wtS that reached the post-medial compartment could be returned to the ERGIC for subsequent incorporation into VLPs, while mutant S protein could not. These results suggest that the ERRS of SARS-CoV contributes to intracellular S protein accumulation specifically in the post-medial Golgi compartment and to S protein incorporation into VLPs.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Virossomos/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Proteínas M de Coronavírus , Complexo de Golgi/química , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/metabolismo
6.
J Virol ; 90(5): 2306-15, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26656716

RESUMO

UNLABELLED: Human parainfluenza virus type 3 (HPIV3) belongs to the Paramyxoviridae family. Its three internal viral proteins, the nucleoprotein (N), the phosphoprotein (P), and the polymerase (L), form the ribonucleoprotein (RNP) complex, which encapsidates the viral genome and associates with the matrix protein (M) for virion assembly. We previously showed that the M protein expressed alone is sufficient to assemble and release virus-like particles (VLPs) and a mutant with the L305A point mutation in the M protein (ML305A) has a VLP formation ability similar to that of wild-type M protein. In addition, recombinant HPIV3 (rHPIV3) containing the ML305A mutation (rHPIV3-ML305A) could be successfully recovered. In the present study, we found that the titer of rHPIV3-ML305A was at least 10-fold lower than the titer of rHPIV3. Using VLP incorporation and coimmunoprecipitation assays, we found that VLPs expressing the M protein (M-VLPs) can efficiently incorporate N and P via an N-M or P-M interaction and ML305A-VLPs had an ability to incorporate P via a P-M interaction similar to that of M-VLPs but were unable to incorporate N and no longer interacted with N. Furthermore, we found that the incorporation of P into ML305A-VLPs but not M-VLPs was inhibited in the presence of N. In addition, we provide evidence that the C-terminal region of P is involved in its interaction with both N and M and N binding to the C-terminal region of P inhibits the incorporation of P into ML305A-VLPs. Our findings provide new molecular details to support the idea that the N-M interaction and not the P-M interaction is critical for packaging N and P into infectious viral particles. IMPORTANCE: Human parainfluenza virus type 3 (HPIV3) is a nonsegmented, negative-sense, single-stranded RNA virus that belongs to the Paramyxoviridae family and can cause lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. However, no effective vaccine has been developed or licensed. We used virus-like particle (VLP) incorporation and coimmunoprecipitation assays to determine how the M protein assembles internal viral proteins. We demonstrate that both nucleoprotein (N) and phosphoprotein (P) can incorporate into M-VLPs and N inhibits the M-P interaction via the binding of N to the C terminus of P. We also provide additional evidence that the N-M interaction but not the P-M interaction is critical for the regulation of HPIV3 assembly. Our studies provide a more complete characterization of HPIV3 virion assembly and substantiation that N interaction with M regulates internal viral organization.


Assuntos
Nucleoproteínas/metabolismo , Vírus da Parainfluenza 3 Humana/fisiologia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Western Blotting , Linhagem Celular , Humanos , Imunoprecipitação , Ligação Proteica , Multimerização Proteica , Virossomos/química , Virossomos/metabolismo
7.
Biotechnol Lett ; 38(2): 299-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26463372

RESUMO

OBJECTIVE: To assemble infectious bronchitis virus (IBV)-like particles bearing the recombinant spike protein and investigate the humoral immune responses in chickens. RESULTS: IBV virus-like particles (VLPs) were generated through the co-infection with three recombinant baculoviruses separately encoding M, E or the recombinant S genes. The recombinant S protein was sufficiently flexible to retain the ability to self-assemble into VLPs. The size and morphology of the VLPs were similar to authentic IBV particles. In addition, the immunogenicity of IBV VLPs had been investigated. The results demonstrated that the efficiency of the newly generated VLPs was comparable to that of the inactivated M41 viruses in eliciting IBV-specific antibodies and neutralizing antibodies in chickens via subcutaneous inoculation. CONCLUSIONS: This work provides basic information for the mechanism of IBV VLP formation and develops a platform for further designing IBV VLP-based vaccines against IBV or other viruses.


Assuntos
Vírus da Bronquite Infecciosa/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Virossomos/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Baculoviridae , Galinhas , Vetores Genéticos , Vírus da Bronquite Infecciosa/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Virossomos/genética
8.
Biochemistry ; 54(49): 7157-67, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26569023

RESUMO

The C-terminal amphipathic helix of the influenza A M2 protein plays a critical cholesterol-dependent role in viral budding. To provide atomic-level detail on the impact cholesterol has on the conformation of M2 protein, we spin-labeled sites right before and within the C-terminal amphipathic helix of the M2 protein. We studied the spin-labeled M2 proteins in membranes both with and without cholesterol. We used a multipronged site-directed spin-label electron paramagnetic resonance (SDSL-EPR) approach and collected data on line shapes, relaxation rates, accessibility of sites to the membrane, and distances between symmetry-related sites within the tetrameric protein. We demonstrate that the C-terminal amphipathic helix of M2 populates at least two conformations in POPC/POPG 4:1 bilayers. Furthermore, we show that the conformational state that becomes more populated in the presence of cholesterol is less dynamic, less membrane buried, and more tightly packed than the other state. Cholesterol-dependent changes in M2 could be attributed to the changes cholesterol induces in bilayer properties and/or direct binding of cholesterol to the protein. We propose a model consistent with all of our experimental data that suggests that the predominant conformation we observe in the presence of cholesterol is relevant for the understanding of viral budding.


Assuntos
Colesterol/química , Vírus da Influenza A/química , Membranas Artificiais , Modelos Químicos , Proteínas da Matriz Viral/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas da Matriz Viral/metabolismo
9.
J Biol Chem ; 289(48): 33590-7, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25315776

RESUMO

Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission.


Assuntos
Ebolavirus/química , Membranas Artificiais , Fosfatidilserinas/química , Proteínas da Matriz Viral/química , Ebolavirus/metabolismo , Modelos Biológicos , Fosfatidilserinas/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/fisiologia
10.
J Virol ; 88(22): 13173-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187547

RESUMO

UNLABELLED: Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells, and matrix (M) proteins are critical for this process. To identify the M protein important for this process, we have characterized the budding of the human parainfluenza virus type 3 (HPIV3) M protein. Our results showed that expression of the HPIV3 M protein alone is sufficient to initiate the release of virus-like particles (VLPs). Electron microscopy analysis confirmed that VLPs are morphologically similar to HPIV3 virions. We identified a leucine (L302) residue within the C terminus of the HPIV3 M protein that is critical for M protein-mediated VLP production by regulating the ubiquitination of the M protein. When L302 was mutated into A302, ubiquitination of M protein was defective, the release of VLPs was abolished, and the membrane binding and budding abilities of M protein were greatly weakened, but the ML302A mutant retained oligomerization activity and had a dominant negative effect on M protein-mediated VLP production. Furthermore, treatment with a proteasome inhibitor also inhibited M protein-mediated VLP production and viral budding. Finally, recombinant HPIV3 containing the M(L302A) mutant could not be rescued. These results suggest that L302 acts as a critical regulating signal for the ubiquitination of the HPIV3 M protein and virion release. IMPORTANCE: Human parainfluenza virus type 3 (HPIV3) is an enveloped virus with a nonsegmented negative-strand RNA genome. It can cause severe respiratory tract diseases, such as bronchiolitis, pneumonia, and croup in infants and young children. However, no valid antiviral therapy or vaccine is currently available. Thus, further elucidation of its assembly and budding will be helpful in the development of novel therapeutic approaches. Here, we show that a leucine residue (L302) located at the C terminus of the HPIV3 M protein is essential for efficient production of virus-like particles (VLPs). Furthermore, we found L302 regulated M protein-mediated VLP production via regulation of M protein ubiquitination. Recombinant HPIV3 containing the M(L302A) mutant is growth defective. These findings provide new insight into the critical role of M protein-mediated VLP production and virion release of a residue that does not belong to L domain and may advance our understanding of HPIV3 viral assembly and budding.


Assuntos
Leucina/metabolismo , Vírus da Parainfluenza 3 Humana/fisiologia , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Liberação de Vírus , Linhagem Celular , Análise Mutacional de DNA , Humanos , Leucina/genética , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Proteínas da Matriz Viral/genética , Virossomos/metabolismo
11.
Biochim Biophys Acta ; 1808(1): 415-23, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20883664

RESUMO

Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding, and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, nonideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and nonideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (ϕ, ψ) torsion angles for three "basis" states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding, and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins.


Assuntos
Química Farmacêutica/métodos , Vírus da Influenza A/metabolismo , Membranas Artificiais , Proteínas da Matriz Viral/metabolismo , Amantadina/farmacologia , Antivirais/farmacologia , Detergentes/química , Humanos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
12.
Biochim Biophys Acta ; 1808(2): 516-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20969830

RESUMO

Amantadine-sensitive proton uptake by liposomes is currently the preferred method of demonstrating M2 functionality after reconstitution, to validate structural determination with techniques such as solid-state NMR. With strong driving forces (two decades each of both [K(+)] gradient-induced membrane potential and [H(+)] gradient), M2(22-62) showed a transport rate of 78 H(+)/tetramer-s (pH(o) 6.0, pH(i) 8.0, nominal V(m)=-114 mV), higher than previously measured for similar, shorter, and full-length constructs. Amantadine sensitivity of the conductance domain at pH 6.8 was also comparable to other published reports. Proton flux rate was optimal at protein densities of 0.05-1.0% (peptide wt.% in lipid). Rundown of total proton uptake after addition of valinomycin and CCCP, as detected by delayed addition of valinomycin, indicated M2-induced K(+) flux of 0.1K(+)/tetramer-s, and also demonstrated that the K(+) permeability, relative to H(+), was 2.8 × 10(-6). Transport rate, amantadine and cyclooctylamine sensitivity, acid activation, and H(+) selectivity were all consistent with full functionality of the reconstituted conductance domain. Decreased external pH increased proton uptake with an apparent pK(a) of 6.


Assuntos
Vírus da Influenza A/química , Canais Iônicos/química , Proteínas da Matriz Viral/química , Amantadina/farmacologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Concentração de Íons de Hidrogênio , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Lipossomos , Potenciais da Membrana , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Valinomicina/farmacologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
13.
J Virol ; 84(10): 5415-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200234

RESUMO

Arenaviruses are enveloped, negative-strand RNA viruses. For several arenaviruses, virus-like particle (VLP) formation requires the viral matrix Z protein. However, the mechanism by which viral ribonucleoprotein complexes are incorporated into virions is poorly understood. Here, we show that the expression of the Z protein and nucleoprotein (NP) of Mopeia virus, a close relative of the pathogenic Lassa virus, resulted in the highly selective incorporation of the NP protein into Z protein-induced VLPs. Moreover, the Z protein promoted the association of NP with cellular membranes, suggesting that the association of NP, Z, and the cellular membranes may facilitate the efficient incorporation of NP into VLPs. By employing a series of NP deletion constructs and testing their VLP incorporation, we further demonstrated an important role for the C-terminal half of NP in its incorporation into VLPs.


Assuntos
Arenavirus do Velho Mundo/fisiologia , Nucleoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Nucleoproteínas/genética , Mapeamento de Interação de Proteínas , Deleção de Sequência , Virossomos/metabolismo
14.
J Virol ; 84(9): 4673-81, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181696

RESUMO

The matrix protein (M1) of influenza A virus is generally viewed as a key orchestrator in the release of influenza virions from the plasma membrane during infection. In contrast to this model, recent studies have indicated that influenza virus requires expression of the envelope proteins for budding of intracellular M1 into virus particles. Here we explored the mechanisms that control M1 budding. Similarly to previous studies, we found that M1 by itself fails to form virus-like-particles (VLPs). We further demonstrated that M1, in the absence of other viral proteins, was preferentially targeted to the nucleus/perinuclear region rather than to the plasma membrane, where influenza virions bud. Remarkably, we showed that a 10-residue membrane targeting peptide from either the Fyn or Lck oncoprotein appended to M1 at the N terminus redirected M1 to the plasma membrane and allowed M1 particle budding without additional viral envelope proteins. To further identify a functional link between plasma membrane targeting and VLP formation, we took advantage of the fact that M1 can interact with M2, unless the cytoplasmic tail is absent. Notably, native M2 but not mutant M2 effectively targeted M1 to the plasma membrane and produced extracellular M1 VLPs. Our results suggest that influenza virus M1 may not possess an inherent membrane targeting signal. Thus, the lack of efficient plasma membrane targeting is responsible for the failure of M1 in budding. This study highlights the fact that interactions of M1 with viral envelope proteins are essential to direct M1 to the plasma membrane for influenza virus particle release.


Assuntos
Membrana Celular/virologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Sinais Direcionadores de Proteínas , Proteínas da Matriz Viral/genética , Liberação de Vírus , Animais , Linhagem Celular , Membrana Celular/química , Núcleo Celular/química , Núcleo Celular/virologia , Chlorocebus aethiops , Cães , Humanos , Proteínas da Matriz Viral/metabolismo , Virossomos/metabolismo
15.
J Virol ; 84(9): 4513-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181713

RESUMO

Virus-like particles (VLPs) released from avian cells expressing the Newcastle disease virus (NDV) strain AV proteins NP, M, HN (hemagglutinin-neuraminidase), and F were characterized. The VLP-associated HN and F glycoproteins directed the attachment of VLPs to cell surfaces and fusion of VLP membranes with red blood cell membranes, indicating that they were assembled into VLPs in an authentic conformation. These particles were quantitatively prepared and used as an immunogen, without adjuvant, in BALB/c mice. The resulting immune responses, detected by enzyme-linked immunosorbent assay (ELISA), virus neutralization, and intracellular cytokine staining, were comparable to the responses to equivalent amounts of inactivated NDV vaccine virus. HN and F proteins from another strain of NDV, strain B1, could be incorporated into these VLPs. Foreign peptides were incorporated into these VLPs when fused to the NP or HN protein. The ectodomain of a foreign glycoprotein, the Nipah virus G protein, fused to the NDV HN protein cytoplasmic and transmembrane domains was incorporated into ND VLPs. Thus, ND VLPs are a potential NDV vaccine candidate. They may also serve as a platform to construct vaccines for other pathogens.


Assuntos
Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Vírion/imunologia , Vírion/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citocinas/biossíntese , Proteína HN/genética , Proteína HN/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vírus Nipah , Proteínas do Nucleocapsídeo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Vacinas Virossomais/administração & dosagem , Vacinas Virossomais/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/patogenicidade , Virossomos/imunologia , Virossomos/metabolismo , Montagem de Vírus , Ligação Viral , Internalização do Vírus
16.
J Virol ; 82(22): 11318-30, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18753196

RESUMO

The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.


Assuntos
Proteínas do Nucleocapsídeo/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Animais , Chlorocebus aethiops , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas do Nucleocapsídeo/genética , Glicoproteína da Espícula de Coronavírus , Células Vero , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Proteínas Viroporinas , Virossomos/metabolismo , Virossomos/ultraestrutura
17.
Virol J ; 6: 119, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19646266

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are the only paramyxoviruses requiring Biosafety Level 4 (BSL-4) containment. Thus, study of henipavirus entry at less than BSL-4 conditions necessitates the use of cell-cell fusion or pseudotyped reporter virus assays. Yet, these surrogate assays may not fully emulate the biological properties unique to the virus being studied. Thus, we developed a henipaviral entry assay based on a beta-lactamase-Nipah Matrix (betala-M) fusion protein. We first codon-optimized the bacterial betala and the NiV-M genes to ensure efficient expression in mammalian cells. The betala-M construct was able to bud and form virus-like particles (VLPs) that morphologically resembled paramyxoviruses. betala-M efficiently incorporated both NiV and HeV fusion and attachment glycoproteins. Entry of these VLPs was detected by cytosolic delivery of betala-M, resulting in enzymatic and fluorescent conversion of the pre-loaded CCF2-AM substrate. Soluble henipavirus receptors (ephrinB2) or antibodies against the F and/or G proteins blocked VLP entry. Additionally, a Y105W mutation engineered into the catalytic site of betala increased the sensitivity of our betala-M based infection assays by 2-fold. In toto, these methods will provide a more biologically relevant assay for studying henipavirus entry at less than BSL-4 conditions.


Assuntos
Fluoresceínas/metabolismo , Henipavirus/fisiologia , Lactamas/metabolismo , Proteínas da Matriz Viral/metabolismo , Virossomos/metabolismo , Internalização do Vírus , beta-Lactamases/metabolismo , Animais , Contenção de Riscos Biológicos/economia , Contenção de Riscos Biológicos/métodos , Genes Reporter , Proteínas Recombinantes de Fusão/genética , Proteínas da Matriz Viral/genética , Virossomos/genética , beta-Lactamases/genética
18.
In Vivo ; 33(6): 1793-1800, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662504

RESUMO

BACKGROUND/AIM: Human chronic periodontitis is a major health problem. Although some oral bacteria have been reported to be putative pathogens, Epstein-Barr virus (EBV) is reported to be associated with the progression of periodontitis. However, the role of EBV in the aetiology of periodontitis is unknown. Therefore, we investigated periodontal pathogenesis of EBV to confirm whether EBV-encoded latent membrane protein 1 (LMP1) induces Interleukin-8 (IL8) production in human gingival cells. MATERIALS AND METHODS: Real-time polymerase chain reaction, luciferase assay, enzyme-linked immunosorbent assay (ELISA), and western blotting were performed for determining IL8 mRNA expression, nuclear factor kappa B (NF-ĸB) transcription, IL8 production, and the phosphorylation of NF-ĸB p65 and Inhibitor of kappa B alpha (IĸBα), respectively, in Ca9-22 human gingival epithelial cells. Two LMP1 mutants lacking C-terminal activating region (CATR) domains responsible for activating NF-ĸB were used. RESULTS: Extremely high IL8 production was induced by LMP1 in time- and dose-dependent manner, where simultaneous phosphorylation of NF-κB p65 and IĸBα and transcription of NF-ĸB were observed. On the contrary, IL8 production and NF-ĸB transcription were drastically inhibited by dominant negative mutant of IĸBα. Moreover, the LMP1 mutants failed to induce IL8 production. CONCLUSION: Our findings suggest that due to CATR domains, LMP1 contributes to the progression of periodontitis via IL8 production attributable to NF-ĸB activation.


Assuntos
Periodontite Crônica/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Gengiva/metabolismo , Herpesvirus Humano 4/metabolismo , Interleucina-8/metabolismo , Proteínas da Matriz Viral/metabolismo , Linhagem Celular , Células Epiteliais/virologia , Epitélio/virologia , Gengiva/virologia , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo
19.
J Egypt Natl Canc Inst ; 31(1): 1, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32372136

RESUMO

BACKGROUND: Extranodal NK/T-cell lymphomas (ENKTL) are rare non-Hodgkin's lymphomas with aggressive clinical behavior. ENKTL are frequently associated with the Epstein-Barr virus (EBV). Data on ENKTL in Africa and Arab world are extremely limited. The study investigated the clinicopathological characteristics, EBV infection, and immunophenotype of ENKTL in Tunisia. We conducted a retrospective study of ENKTL. Main clinicopathological features were reported. The expression of CD3, CD4, CD5, CD8, CD20, CD56, CD57, and Granzyme B were analyzed by immunohistochemistry. EBV infection was detected by IHC (LMP-1) and Epstein-Barr encoding region (EBER1/2) in situ hybridization. RESULTS: A total of nine ENKTL were identified (mean age of 48 years and male-to-female ratio of 8:1). There were five nasal ENKTL, and the remaining four cases had extranasal involvement (palate, sub-mandibular gland, skin, and soft tissues of the ankle). The histopathology showed a lymphoid and pleomorphic proliferation characterized by images of angiocentrism. Strong and diffuse CD3 expression was observed in all cases. Tumor cells exhibited an expression of CD5 (two cases), CD8 (three cases), CD56 (six cases), CD57 (three cases), and Granzyme B (eight cases). All ENKTL cases were EBV-associated. Overall 5-year survival rate was 57%. Although six ENKTL were diagnosed at early clinical stages, the prognosis was unfavorable and associated with patient death in three cases. CONCLUSIONS: ENKTL are exceptional in Tunisia with unfavorable outcome. Histopathological diagnosis remains challenging in clinical practice. However, a careful histopathological examination combined with a correct interpretation of immunohistochemistry and in situ hybridization results refines the ENKTL diagnosis.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Linfoma Extranodal de Células T-NK/complicações , Linfoma Extranodal de Células T-NK/patologia , Adulto , Idoso , Antígenos de Diferenciação/metabolismo , Infecções por Vírus Epstein-Barr/epidemiologia , Feminino , Herpesvirus Humano 4/isolamento & purificação , Humanos , Linfoma Extranodal de Células T-NK/epidemiologia , Linfoma Extranodal de Células T-NK/virologia , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Viral/metabolismo , Estudos Retrospectivos , Taxa de Sobrevida , Tunísia/epidemiologia , Proteínas da Matriz Viral/metabolismo
20.
Biophys J ; 94(2): 434-45, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17827230

RESUMO

Influenza A virus M2 protein is known to form acid-activated, proton-selective, amantadine-sensitive channels. We directly measured proton uptake in vesicles containing reconstituted M2 by monitoring external pH after addition of valinomycin to vesicles with 100-fold-diluted external [K(+)]. External pH typically increased by a few tenths of a pH unit over a few minutes after valinomycin addition, but proton uptake was not significantly altered by acidification. Under neutral conditions, external addition of 1 mM amantadine produced a reduction in flux consistent with randomly ordered channels; however, experimental variation is high with this method and the block was not statistically significant. Amantadine block was reduced at pH 5.4. In accord with Lin and Schroeder's study of reconstituted M2 using a pH-sensitive dye to monitor intravesicular pH, we conclude that bath pH weakly affects or does not significantly affect proton flow in the pH range 5.4-7.0 for the reconstituted system, contrary to results from electrophysiological studies. Theoretical analysis of the relaxation to Donnan equilibrium utilized for such vesicle uptake assays illuminates the appropriate timescale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 s after ionophore addition yielded time-averaged single-channel conductances of 0.35 +/- 0.20 aS and 0.72 +/- 0.42 aS at pH 5.4 and 7.0, respectively, an order of magnitude lower than previously reported in vesicles. Assuming complete membrane incorporation and tetramerization of the reconstituted protein, such a low time-averaged conductance in the face of previously observed single-channel conductance (6 pS at pH 3) implies an open channel probability of 10(-6)-10(-4). Based on leakage of potassium from M2-containing vesicles, compared to protein-free vesicles, we conclude that M2 exhibits approximately 10(7) selectivity for hydrogen over potassium.


Assuntos
Lipossomos/metabolismo , Prótons , Proteínas da Matriz Viral/metabolismo , Condutividade Elétrica , Eletroforese em Gel de Poliacrilamida , Gramicidina/farmacologia , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA