Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Oral Dis ; 22(5): 399-405, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26866618

RESUMO

OBJECTIVES: GaAlAs lasers induce pulp mineralization by promoting reparative dentinogenesis. This study analyzed the expression of dentin matrix protein 1 (DMP1) and osteopontin in GaAlAs laser-irradiated rat molars, to examine the hypothesis that these proteins play a role in the laser-induced reparative dentinogenic process. MATERIALS AND METHODS: The mesial surfaces of the upper first molars of 8-week-old Wistar rats were irradiated with a pulsed GaAlAs laser. After 1-14 days, mRNA expression of DMP1 and osteopontin in the coronal pulp was analyzed using real-time PCR. DMP1, osteopontin, and heat shock protein 25 (HSP25) were immunolocalized at 1-21 days. RESULTS: The pulp exhibited a degenerative zone in its mesial portion on days 1-3, and progressive formation of reparative dentin lined with HSP25-immunoreactive odontoblast-like cells, from day 7 onwards. DMP1 and osteopontin mRNA expression were significantly upregulated on days 1-7 and 3-7, respectively. From day 7 onwards, DMP1 and osteopontin immunoreactivity colocalized along the boundary between the primary and reparative dentin. CONCLUSION: GaAlAs laser irradiation of rat molars induced upregulated DMP1 and osteopontin mRNA expression in the coronal pulp, followed by the formation of reparative dentin and the colocalization of DMP1 and osteopontin immunoreactivity at the site at which this tissue first appeared.


Assuntos
Dentina Secundária/metabolismo , Dentina Secundária/efeitos da radiação , Proteínas da Matriz Extracelular/biossíntese , Lasers Semicondutores , Dente Molar/efeitos da radiação , Osteopontina/biossíntese , Fosfoproteínas/biossíntese , Animais , Polpa Dentária/citologia , Polpa Dentária/fisiologia , Proteínas da Matriz Extracelular/efeitos da radiação , Proteínas de Choque Térmico HSP27/biossíntese , Imuno-Histoquímica , Masculino , Dente Molar/citologia , Dente Molar/metabolismo , Odontoblastos/metabolismo , Odontoblastos/efeitos da radiação , Osteopontina/efeitos da radiação , Fosfoproteínas/efeitos da radiação , Ratos , Ratos Wistar , Regulação para Cima/efeitos da radiação
2.
Neurobiol Dis ; 47(2): 163-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521462

RESUMO

The small heat shock protein HSPB1 is a multifunctional, α-crystallin-based protein that has been shown to be neuroprotective in animal models of motor neuron disease and peripheral nerve injury. Missense mutations in HSPB1 result in axonal Charcot-Marie-Tooth disease with minimal sensory involvement (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN-II). These disorders are characterized by a selective loss of motor axons in peripheral nerve resulting in distal muscle weakness and often severe disability. To investigate the pathogenic mechanisms of HSPB1 mutations in motor neurons in vivo, we have developed and characterized transgenic PrP-HSPB1 and PrP-HSPB1(R136W) mice. These mice express the human HSPB1 protein throughout the nervous system including in axons of peripheral nerve. Although both mouse strains lacked obvious motor deficits, the PrP-HSPB1(R136W) mice developed an age-dependent motor axonopathy. Mutant mice showed axonal pathology in spinal cord and peripheral nerve with evidence of impaired neurofilament cytoskeleton, associated with organelle accumulation. Accompanying these findings, increases in the number of Schmidt-Lanterman incisures, as evidence of impaired axon-Schwann cell interactions, were present. These observations suggest that overexpression of HSPB1(R136W) in neurons is sufficient to cause pathological and electrophysiological changes in mice that are seen in patients with hereditary motor neuropathy.


Assuntos
Envelhecimento/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP27/genética , Neurônios Motores/metabolismo , Mutação/fisiologia , Envelhecimento/patologia , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Choque Térmico HSP27/biossíntese , Proteínas de Choque Térmico , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Distribuição Aleatória
3.
J Endod ; 43(9): 1486-1493, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28673495

RESUMO

INTRODUCTION: Understanding protein expression profiles of apical periodontitis may contribute to the discovery of novel diagnostic or therapeutic molecular targets. METHODS: Periapical tissue samples (n = 5) of patients with lesions characterized as nonhealing were submitted for proteomic analysis. Two differentially expressed proteins (heat shock protein 27 [HSP27] and serpin family B member 1 [SERPINB1]) were selected for characterization, localization by immunofluorescence, and association with known biomarkers of acute inflammatory response in human apical periodontitis (n = 110) and healthy periodontal ligaments (n = 26). Apical periodontitis samples were categorized as stable/inactive (n = 70) or progressive/active (n = 40) based on the ratio of expression of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG). Next, the expression of HSP27, SERPINB1, C-X-C motif Chemokine Receptor 1 (CXCR1), matrix metalloproteinase 8 (MMP8), myeloperoxidase (MPO), and cathepsin G (CTSG) messenger RNA was evaluated using real-time polymerase chain reaction. Data analysis was performed using the Shapiro-Wilk test, analysis of variance, and the Pearson test. P values <.05 were considered statistically significant. RESULTS: Proteomic analysis revealed 48 proteins as differentially expressed in apical periodontitis compared with a healthy periodontium, with 30 of these proteins found to be expressed in all 4 lesions. The expression of HSP27 and SERPINB1 was ∼2-fold higher in apical periodontitis. Next, an increased expression of HSP27 was detected in epithelial cells, whereas SERPINB1 expression was noted in neutrophils and epithelial cells. HSP27 and SERPINB1 transcripts were highly expressed in stable/inactive lesions (P < .05). Significant negative correlations were found between the expression of HSP27 and SERPINB1 with biomarkers of acute inflammation including CXCR1, MPO, and CTSG. CONCLUSIONS: Our data suggest HSP27 and SERPINB1 as potential regulators of the inflammatory response in apical periodontitis. Additional functional studies should be performed to further characterize the role of these molecules during the development/progression of apical periodontitis.


Assuntos
Proteínas de Choque Térmico HSP27/biossíntese , Proteínas de Choque Térmico HSP27/genética , Periodontite Periapical/metabolismo , Proteômica , RNA Mensageiro/genética , Serpinas/biossíntese , Serpinas/genética , Expressão Gênica , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Periodontite Periapical/genética
4.
Int J Biochem Cell Biol ; 45(7): 1499-508, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23618875

RESUMO

Aberrant aggregation of neurofilament proteins is a common feature of neurodegenerative diseases. For example, neurofilament light protein (NEFL) mutants causing Charcot-Marie-Tooth disease induce misassembly of neurofilaments. This study demonstrated that mutations in different functional domains of NEFL have different effects on filament assembly and susceptibility to interventions to restore function. The mouse NEFL mutants, NEFL(Q333P) and NEFL(P8R), exhibited different assembly properties in SW13-cells, cells lacking endogenous intermediate filaments, indicating different consequences of these mutations on the biochemical properties of NEFL. The p.Q333P mutation caused reversible misfolding of the protein. NEFL(Q333P) could be refolded and form coil-coiled dimers, in vitro using chaotropic agent, and in cultured cells by induction of HSPA1 and HSPB1. Celastrol, an inducer of chaperone proteins, induced HSPA1 expression in motor neurons and prevented the formation of neurofilament inclusions and mitochondrial shortening induced by expression of NEFL(Q333P), but not in sensory neurons. Conversely, celastrol had a protective effect against the toxicity of NEFL(P8R), a mutant which is sensitive to HSBP1 but not HSPA1 chaperoning, only in large-sized sensory neurons, not in motor neurons. Importantly, sensory and motor neurons do not respond identically to celastrol and different chaperones are upregulated by the same treatment. Thus, effective therapy of CMT not only depends on the identity of the mutated gene, but the consequences of the specific mutation on the properties of the protein and the neuronal population targeted.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas de Neurofilamentos/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27/biossíntese , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico , Humanos , Camundongos , Mitocôndrias/metabolismo , Chaperonas Moleculares , Neurônios Motores/metabolismo , Proteínas de Neurofilamentos/química , Proteínas de Neurofilamentos/genética , Triterpenos Pentacíclicos , Dobramento de Proteína , Células Receptoras Sensoriais/metabolismo , Triterpenos/farmacologia
5.
J Endod ; 37(8): 1086-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21763899

RESUMO

INTRODUCTION: This study aimed to clarify pulpal responses to gallium-aluminum-arsenide (GaAlAs) laser irradiation. METHODS: Maxillary first molars of 8-week-old rats were irradiated at an output power of 0.5 or 1.5 W for 180 seconds, and the samples were collected at intervals of 0 to 14 days. The demineralized paraffin sections were processed for immunohistochemistry for heat-shock protein (HSP)-25 and nestin in addition to cell proliferation assay using bromodeoxyuridine (BrdU) labeling and apoptosis assay using deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL). RESULTS: Intense HSP-25 and nestin immunoreactivities in the odontoblast layer were weakened immediately after 0.5-W irradiation and recovered on day 1, resulting in slight tertiary dentin formation by day 14. On the contrary, 1.5-W irradiation immediately induced the loss of HSP-25 and nestin-immunoreactivities in the odontoblast layer. On day 1, numerous TUNEL-positive cells appeared in a degenerative zone that was surrounded by intense HSP-25 immunoreactivity. BrdU-positive cells occurred within the intensely HSP-25-immunopositive areas during days 2 through 5, whereas TUNEL-positive cells gradually decreased in number by day 5. HSP-25- and nestin-positive odontoblast-like cells were arranged along the pulp-dentin border by day 7, resulting in remarkable tertiary dentin formation on day 14. CONCLUSIONS: The output energy determined pulpal healing patterns after GaAlAs laser irradiation; the higher energy induced the apoptosis in the affected dental pulp including odontoblasts followed by active cell proliferation in the intense HSP-25-immunoreactive areas surrounding the degenerative tissue, resulting in abundant tertiary dentin formation. Thus, the optimal GaAlAs laser irradiation elicited intentional tertiary dentin formation in the dental pulp.


Assuntos
Polpa Dentária/citologia , Dentina Secundária/metabolismo , Lasers Semicondutores , Odontoblastos/fisiologia , Animais , Apoptose , Bromodesoxiuridina/metabolismo , Proliferação de Células , Polpa Dentária/fisiologia , Feminino , Proteínas de Choque Térmico HSP27/biossíntese , Marcação In Situ das Extremidades Cortadas , Proteínas de Filamentos Intermediários/biossíntese , Lasers Semicondutores/efeitos adversos , Dente Molar , Proteínas do Tecido Nervoso/biossíntese , Nestina , Ratos , Ratos Wistar , Cicatrização
6.
J Proteomics ; 74(10): 2018-24, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21621020

RESUMO

Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) are the main etiological agents of Hand, Foot and Mouth Disease (HFMD), a common disease among children and had caused several outbreaks in the Asia-Pacific region. Although being genetically close to each other, EV71 infection can cause serious and fatal neurological complications like encephalitis, myocarditis, acute flaccid paralysis (AFP) and aseptic meningitis, but not in CA16 infections. In this study, the cellular response of host cells infected with EV71 and CA16 was characterized and compared by 2-dimensional proteome analyses. A total of 16 proteins were identified to be differentially expressed in EV71 and CA16-infected host cells. Desmin and HSP27, both indirectly regulate the contraction of muscle cells, were significantly downregulated as a result of EV71 infection, suggesting a link to acute flaccid paralysis. The ability of EV71 to evade host immune system may be due to the downregulation of MHC-I synthesis proteins like protein disulfide isomerase A3 and calreticulin. Proteins such as nucleophosmin, nuclear ribonucleoprotein C, and eukaryotic translation initiation factor 2 were all downregulated significantly, suggesting the rapid shutting down of host translation machinery by EV71. These findings provide insight into the nature of high virulent EV71 infection as compared to CA16.


Assuntos
Infecções por Coxsackievirus/genética , Desmina/biossíntese , Enterovirus Humano A/genética , Proteínas de Choque Térmico HSP27/biossíntese , Doença de Mão, Pé e Boca/genética , Criança , Pré-Escolar , Infecções por Coxsackievirus/metabolismo , Desmina/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP27/genética , Doença de Mão, Pé e Boca/metabolismo , Doença de Mão, Pé e Boca/virologia , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Proteoma/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/virologia , Células Tumorais Cultivadas
7.
Histochem Cell Biol ; 130(4): 773-83, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18463888

RESUMO

Odontoblast-lineage cells acquire heat-shock protein (HSP)-25-immunoreactivity (IR) after they complete their cell division, suggesting that this protein acts as a switch between cell proliferation and differentiation during tooth development. However, there are few available data concerning the relationship between cell proliferation and differentiation following cavity preparation. The present study aims to clarify the expression of HSP-25 in the odontoblast-lineage cells with their proliferative activity after cavity preparation by immunocytochemistry for HSP-25 and cell proliferation assay using 5-bromo-2'-deoxyuridine (BrdU) labeling. In untreated control teeth, intense HSP-25-IR was found in odontoblasts and some subodontoblastic mesenchymal cells. Cavity preparation caused the destruction of odontoblasts and the disappearance of HSP-25-IR was conspicuous at the affected site, although some cells retained HSP-25-IR and subsequently most of them disappeared from the pulp-dentin border by postoperative day 1. Contrary, some subodontoblastic mesenchymal cells with weak HSP-25-IR began to take the place of degenerated cells, although no proliferative activity was recognizable in the dental pulp. Interestingly, proliferative cells in the dental pulp significantly increased in number on day 2 when the newly differentiating cells already arranged along the pulp-dentin border, and continued their proliferative activity in the wide range of the pulp tissue until day 5. These findings indicate that progenitor cells equipped in the subodontoblastic layer firstly migrate and differentiate into new odontoblast-like cells to compensate for the loss of the odontoblast layer, and subsequently the reorganization of dental pulp was completed by active proliferation of the mesenchymal cells occurring in a wide range of pulp tissue.


Assuntos
Preparo da Cavidade Dentária , Polpa Dentária/citologia , Polpa Dentária/fisiologia , Dente Molar/citologia , Dente Molar/fisiologia , Cicatrização/fisiologia , Animais , Bromodesoxiuridina/química , Proliferação de Células , Proteínas de Choque Térmico HSP27/biossíntese , Imuno-Histoquímica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA