Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000090

RESUMO

The acidic byproducts of bacteria in plaque around orthodontic brackets contribute to white spot lesion (WSL) formation. Nitric oxide (NO) has antibacterial properties, hindering biofilm formation and inhibiting the growth of oral microbes. Materials that mimic NO release could prevent oral bacteria-related pathologies. This study aims to integrate S-nitroso-acetylpenicillamine (SNAP), a promising NO donor, into orthodontic elastomeric ligatures, apply an additional polymer coating, and evaluate the NO-release kinetics and antimicrobial activity against Streptococus mutans. SNAP was added to clear elastomeric chains (8 loops, 23 mm long) at three concentrations (50, 75, 100 mg/mL, and a control). Chains were then coated, via electrospinning, with additional polymer (Elastollan®) to aid in extending the NO release. NO flux was measured daily for 30 days. Samples with 75 mg/mL SNAP + Elastollan® were tested against S. mutans for inhibition of biofilm formation on and around the chain. SNAP was successfully integrated into ligatures at each concentration. Only the 75 mg/mL SNAP chains maintained their elasticity. After polymer coating, samples exhibited a significant burst of NO on the first day, exceeding the machine's reading capacity, which gradually decreased over 29 days. Ligatures also inhibited S. mutans growth and biofilm formation. Future research will assess their mechanical properties and cytotoxicity. This study presents a novel strategy to address white spot lesion (WSL) formation and bacterial-related pathologies by utilizing nitric oxide-releasing materials. Manufactured chains with antimicrobial properties provide a promising solution for orthodontic challenges, showing significant potential for academic-industrial collaboration and commercial viability.


Assuntos
Biofilmes , Elastômeros , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Elastômeros/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Biofilmes/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Braquetes Ortodônticos/microbiologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/síntese química , Humanos
2.
Anal Chem ; 92(20): 13641-13646, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32955253

RESUMO

In this letter, the innate ability of nitric oxide (NO) to inhibit platelet activation/adhesion/thrombus formation is employed to improve the hemocompatibility and in vivo accuracy of an intravascular (IV) potentiometric PCO2 (partial pressure of carbon dioxide) sensor. The catheter-type sensor is fabricated by impregnating a segment of dual lumen silicone tubing with a proton ionophore, plasticizer, and lipophilic cation-exchanger. Subsequent filling of bicarbonate and strong buffer solutions and placement of Ag/AgCl reference electrode wires within each lumen, respectively, enables measurement of the membrane potential difference across the inner wall of the tube, with this potential changing as a function of the logarithm of sample PCO2. The dual lumen device is further encapsulated within a S-nitroso-N-acetyl-DL-penicillamine (SNAP)-doped silicone tube that releases physiological levels of NO. The NO releasing sensor exhibits near-Nernstian sensitivity toward PCO2 (slope = 59.31 ± 0.78 mV/decade) and low drift rates (<2 mV/24 h after initial equilibration). In vivo evaluation of the NO releasing sensors, performed in the arteries and veins of anesthetized pigs for 20 h, shows enhanced accuracy (vs non-NO releasing sensors) when benchmarked to measurements of discrete blood samples made with a commercial blood gas analyzer. The accurate, continuous monitoring of blood PCO2 levels achieved with this new IV NO releasing PCO2 sensor configuration could help better manage hospitalized patients in critical care units.


Assuntos
Materiais Biocompatíveis/química , Dióxido de Carbono/análise , Óxido Nítrico/metabolismo , Potenciometria/métodos , Animais , Vasos Sanguíneos/química , Eletrodos , Resinas de Troca Iônica/química , Potenciometria/instrumentação , S-Nitroso-N-Acetilpenicilamina/química , Silicones/química , Suínos
3.
Nitric Oxide ; 86: 31-37, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735785

RESUMO

The light induced nitric oxide (NO) release properties of S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) NO donors doped within polydimethylsiloxane (PDMS) films (PDMS-SNAP and PDMS-GSNO respectively) for potential inhaled NO (iNO) applications is examined. To achieve photolytic release of gas phase NO from the PDMS-SNAP and PDMS-GSNO films, narrow-band LED light sources are employed and the NO concentration in a N2 sweep gas above the film is monitored with an electrochemical NO sensor. The NO release kinetics using LED sources with different nominal wavelengths and optical power densities are reported. The effect of the NO donor loading within the PDMS films is also examined. The NO release levels can be controlled by the LED triggered release from the NO donor-doped silicone rubber films in order to generate therapeutic levels in a sweep gas for suitable durations potentially useful for iNO therapy. Hence this work may lay the groundwork for future development of a highly portable iNO system for treatment of patients with pulmonary hypertension, hypoxemia, and cystic fibrosis.


Assuntos
Portadores de Fármacos/química , Doadores de Óxido Nítrico/química , Óxido Nítrico/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitrosoglutationa/química , Silicones/química , Liberação Controlada de Fármacos , Gases/química , Cinética , Membranas Artificiais , Doadores de Óxido Nítrico/efeitos da radiação , S-Nitroso-N-Acetilpenicilamina/efeitos da radiação , S-Nitrosoglutationa/efeitos da radiação , Raios Ultravioleta
4.
J Colloid Interface Sci ; 664: 928-937, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503078

RESUMO

Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO2) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.


Assuntos
Anti-Infecciosos , Trombose , Humanos , Óxido Nítrico/química , Prata/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Staphylococcus aureus , Escherichia coli , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Trombose/prevenção & controle , Polímeros/química
5.
Biomater Sci ; 12(18): 4664-4681, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38980705

RESUMO

Healthcare associated infections (HCAI) represent a significant burden worldwide contributing to morbidity and mortality and result in substantial economic consequences equating to billions annually. Although the impacts of HCAI have been felt for many years, the coronavirus pandemic has had a profound effect, escalating rates of HCAI, even with extensive preventative measures such as vaccination, personal protective equipment, and deep cleaning regimes. Therefore, there is an urgent need for new solutions to mitigate this serious health emergency. In this paper, the fabrication of nitric oxide (NO) releasing dual action polymer coatings for use in healthcare applications is described. The coatings are doped with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and release high payloads of NO in a sustained manner for in excess of 50 hours. These coatings are extensively characterized in multiple biologically relevant solutions and the antibacterial/antiviral efficacy is studied. For the first time, we assess antibacterial activity in a time course study (1, 2, 4 and 24 h) in both nutrient rich and nutrient poor conditions. Coatings exhibit excellent activity against Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus (MRSA), with up to complete reduction observed over 24 hours. Additionally, when tested against SARS-CoV-2, the coatings significantly reduced active virus in as little as 10 minutes. These promising results suggest that these coatings could be a valuable addition to existing preventative measures in the fight against HCAIs.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Óxido Nítrico , Pseudomonas aeruginosa , SARS-CoV-2 , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , COVID-19/prevenção & controle , Antivirais/farmacologia , Antivirais/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/química , Animais , Infecções Bacterianas/prevenção & controle
6.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38593411

RESUMO

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Escherichia coli , Teste de Materiais , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Escherichia coli/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Biofilmes/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Propriedades de Superfície , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Gengiva/citologia
7.
Nitric Oxide ; 27(4): 228-34, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22921992

RESUMO

Despite the documented potential to leverage nitric oxide generation to improve in vivo performance of implanted devices, a key limitation to current NO releasing materials tested thus far is that there has not been a means to modulate the level of NO release after it has been initiated. We report the fabrication of a wireless platform that uses light to release NO from a polymethylmethacrylate (PMMA) optical fiber coated with an S-nitroso-N-acetylpenicillamine derivatized polydimethylsiloxane (SNAP-PDMS). We demonstrate that a VAOL-5GSBY4 LED (λ(dominant)=460 nm) can be used as a dynamic trigger to vary the level of NO released from 500 µm diameter coated PMMA. The ability to generate programmable sequences of NO flux from the surface of these coated fibers offers precise spatial and temporal control over NO release and provides a platform to begin the systematic study of in vivo physiological response to implanted devices. NO surface fluxes up to 3.88 ± 0.57 × 10(-10)mol cm(-2)min(-1) were achieved with -100 µm thick coatings on the fibers and NO flux was pulsed, ramped and held steady using the wireless platform developed. We demonstrate the NO release is linearly proportional to the drive current applied to the LED (and therefore level of light produced from the LED). This system allow the surface flux of NO from the fibers to be continuously changed, providing a means to determine the level and duration of NO needed to mediate physiological response to blood contacting and subcutaneous implants and will ultimately lead to the intelligent design of NO releasing materials tailored to specific patterns of NO release needed to achieve reliable in vivo performance for intravascular and subcutaneous sensors and potentially for a wide variety of other implanted biomedical devices.


Assuntos
Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico/química , Fibras Ópticas , S-Nitroso-N-Acetilpenicilamina/metabolismo , Preparações de Ação Retardada , Dimetilpolisiloxanos/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Polimetil Metacrilato/química , Próteses e Implantes , S-Nitroso-N-Acetilpenicilamina/química
8.
ACS Appl Mater Interfaces ; 14(27): 30595-30606, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759508

RESUMO

Physical incorporation of nitric oxide (NO) releasing materials in biomedical grade polymer matrices to fabricate antimicrobial coatings and devices is an economically viable process. However, achieving long-term NO release with a minimum or no leaching of the NO donor from the polymer matrix is still a challenging task. Herein, (N-acetyl-S-nitrosopenicillaminyl)-S-nitrosopenicillamine (SNAP-SNAP), a penicillamine dipeptide NO-releasing molecule, is incorporated into a commercially available biomedical grade silicone rubber (SR) to fabricate a NO-releasing coating (SNAP-SNAP/SR). The storage stabilities of the SNAP-SNAP powder and SNAP-SNAP/SR coating were analyzed at different temperatures. The SNAP-SNAP/SR coatings with varying wt % of SNAP-SNAP showed a tunable and sustained NO release for up to 6 weeks. Further, S-nitroso-N-acetylpenicillamine (SNAP), a well-explored NO-releasing molecule, was incorporated into a biomedical grade silicone polymer to fabricate a NO-releasing coating (SNAP/SR) and a comparative analysis of the NO release and S-nitrosothiol (RSNO) leaching behavior of 10 wt % SNAP-SNAP/SR and 10 wt % SNAP/SR was studied. Interestingly, the 10 wt % SNAP-SNAP/SR coatings exhibited ∼36% higher NO release and 4 times less leaching of NO donors than the 10 wt % SNAP/SR coatings. Further, the 10 wt % SNAP-SNAP/SR coatings exhibited promising antibacterial properties against Staphylococcus aureus and Escherichia coli due to the persistent release of NO. The 10 wt % SNAP-SNAP/SR coatings were also found to be biocompatible against NIH 3T3 mouse fibroblast cells. These results corroborate the sustained stability and NO-releasing properties of the SNAP-SNAP in a silicone polymer matrix and demonstrate the potential for the SNAP-SNAP/SR polymer in the fabrication of long-term indwelling biomedical devices and implants to enhance biocompatibility and resist device-related infections.


Assuntos
Óxido Nítrico , Elastômeros de Silicone , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Camundongos , Óxido Nítrico/química , Doadores de Óxido Nítrico/química , Compostos Nitrosos , Polímeros/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia
9.
Biomed Mater ; 16(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075764

RESUMO

Impaired diabetic wounds are one of the major pathophysiological complications caused by persistent microbial infections, prolonged inflammation, and insufficient angiogenic responses. Here, we report the development of nitric-oxide (NO) -releasing S-nitroso-N-acetyl-penicillamine (SNAP) -loaded chitosan/polyvinyl-alcohol hydrogel and its efficacy in enhancing the wound-healing potential of bone marrow mesenchymal stem cells in diabetic wounds. NO-releasing hydrogels significantly increased the cell viability and cell proliferation of hydrogen-peroxide (H2O2) -pretreated bone marrow stem cells (BMSCs), demonstrating their cytoprotective activity, which was further confirmed by gene expression of many times as much B-cell lymphoma 2 (Bcl-2), stromal cell-derived factor-1alpha (SDF-1α), proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF). Furthermore, the SNAP-loaded hydrogel showed continuous cell-proliferating activity for six days, due to the slow release of NO from the hydrogel. Wound-healing studies of rabbits with induced diabetes showed that the application of SNAP-preconditioned BMSCs and NO-releasing hydrogels significantly sped up the healing process, compared to the control group. The wound-healing potential of BMSCs plus NO-releasing hydrogel was further validated by improved collagen deposition and epithelial layer formation, as confirmed by histopathological examination, as well as upregulation of VEGF and SDF-1α biomarkers, as evidenced by gene-expression analysis. These results demonstrated that the application of BMSCs with NO-releasing hydrogel can promote faster regeneration of damaged tissues. Therefore, BMSCs plus NO-releasing hydrogels can be very useful for the treatment of diabetic wounds.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Quitosana/química , Diabetes Mellitus/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Óxido Nítrico/química , Álcool de Polivinil/química , Animais , Biomarcadores/metabolismo , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Perfilação da Expressão Gênica , Peróxido de Hidrogênio , Coelhos , S-Nitroso-N-Acetilpenicilamina/química , Fator A de Crescimento do Endotélio Vascular , Cicatrização
10.
ACS Appl Mater Interfaces ; 13(37): 43892-43903, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516076

RESUMO

Despite technological advancement, nosocomial infections are prevalent due to the rise of antibiotic resistance. A combinatorial approach with multimechanistic antibacterial activity is desired for an effective antibacterial medical device surface strategy. In this study, an antimicrobial peptide, nisin, is immobilized onto biomimetic nitric oxide (NO)-releasing medical-grade silicone rubber (SR) via mussel-inspired polydopamine (PDA) as a bonding agent to reduce the risk of infection. Immobilization of nisin on NO-releasing SR (SR-SNAP-Nisin) and the surface characteristics were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy and contact angle measurements. The NO release profile (7 days) and diffusion of SNAP from SR-SNAP-Nisin were quantified using chemiluminescence-based nitric oxide analyzers and UV-vis spectroscopy, respectively. Nisin quantification showed a greater affinity of nisin immobilization toward SNAP-doped SR. Matrix-assisted laser desorption/ionization mass spectrometry analysis on surface nisin leaching for 120 h under physiological conditions demonstrated the stability of nisin immobilization on PDA coatings. SR-SNAP-Nisin shows versatile in vitro anti-infection efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in the planktonic and adhered states. Furthermore, the combination of NO and nisin has a superior ability to impair biofilm formation on polymer surfaces. SR-SNAP-Nisin leachates did not elicit cytotoxicity toward mouse fibroblast cells and human umbilical vein endothelial cells, indicating the biocompatibility of the material in vitro. The preventative and therapeutic potential of SR-SNAP-Nisin dictated by two bioactive agents may offer a promising antibacterial surface strategy.


Assuntos
Antibacterianos/farmacologia , Proteínas Imobilizadas/farmacologia , Nisina/farmacologia , Doadores de Óxido Nítrico/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas Imobilizadas/química , Proteínas Imobilizadas/toxicidade , Indóis/química , Indóis/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Nisina/química , Nisina/toxicidade , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/toxicidade , Polímeros/química , Polímeros/toxicidade , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/toxicidade , Elastômeros de Silicone/química , Elastômeros de Silicone/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
11.
Talanta ; 205: 120077, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450395

RESUMO

Implantable medical devices are an integral part of primary/critical care. However, these devices carry a high risk for blood clots, caused by platelet aggregation on a foreign body surface. This study focuses on the development of a simplified approach to create nitric oxide (NO) releasing intravascular electrochemical oxygen (O2) sensors with increased biocompatibility and analytical accuracy. The implantable sensors are prepared by embedding S-nitroso-N-acetylpenacillamine (SNAP) as the NO donor molecule in the walls of the catheter type sensors. The SNAP-impregnated catheters were prepared by swelling silicone rubber tubing in a tetrahydrofuran solution containing SNAP. Control and SNAP-impregnated catheters were used to fabricate the Clark-style amperometric PO2 sensors. The SNAP-impregnated sensors release NO under physiological conditions for 18 d as measured by chemiluminescence. The analytical response of the SNAP-impregnated sensors was evaluated in vitro and in vivo. Rabbit and swine models (with sensors placed in both veins and arteries) were used to evaluate the effects on thrombus formation and analytical in vivo PO2 sensing performance. The SNAP-impregnated PO2 sensors were found to more accurately measure PO2 levels in blood continuously (over 7 and 20 h animal experiments) with significantly reduced thrombus formation (as compared to controls) on their surfaces.


Assuntos
Técnicas Eletroquímicas/instrumentação , Doadores de Óxido Nítrico/química , Oxigênio/sangue , S-Nitroso-N-Acetilpenicilamina/química , Dispositivos de Acesso Vascular , Animais , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Artéria Femoral , Medições Luminescentes , Óxido Nítrico/farmacocinética , Coelhos , Silicones , Suínos
12.
Acta Biomater ; 90: 122-131, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953800

RESUMO

The large, densely packed artificial surface area of artificial lungs results in rapid clotting and device failure. Surface generated nitric oxide (NO) can be used to reduce platelet activation and coagulation on gas exchange fibers, while not inducing patient bleeding due to its short half-life in blood. To generate NO, artificial lungs can be manufactured with PDMS hollow fibers embedded with copper nanoparticles (Cu NP) and supplied with an infusion of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). The SNAP reacts with Cu NP to generate NO. This study investigates clot formation and gas exchange performance of artificial lungs with either NO-generating Cu-PDMS or standard polymethylpentene (PMP) fibers. One miniature artificial lung (MAL) made with 10 wt% Cu-PDMS hollow fibers and one PMP control MAL were attached to sheep in parallel in a veno-venous extracorporeal membrane oxygenation circuit (n = 8). Blood flow through each device was set at 300 mL/min, and each device received a SNAP infusion of 0.12 µmol/min. The ACT was between 110 and 180 s in all cases. Blood flow resistance was calculated as a measure of clot formation on the fiber bundle. Gas exchange experiments comparing the two groups were conducted every 24 h at blood flow rates of 300 and 600 mL/min. Devices were removed once the resistance reached 3x baseline (failure) or following 72 h. All devices were imaged using scanning electron microscopy (SEM) at the inlet, outlet, and middle of the fiber bundle. The Cu-PDMS NO generating MALs had a significantly smaller increase in resistance compared to the control devices. Resistance rose from 26 ±â€¯8 and 23 ±â€¯5 in the control and Cu-PDMS devices, respectively, to 35 ±â€¯8 mmHg/(mL/min) and 72 ±â€¯23 mmHg/(mL/min) at the end of each experiment. The resistance and SEM imaging of fiber surfaces demonstrate lower clot formation on Cu-PDMS fibers. Although not statistically significant, oxygen transfer for the Cu-PDMS MALs was 13.3% less than the control at 600 mL/min blood flow rate. Future in vivo studies with larger Cu-PDMS devices are needed to define gas exchange capabilities and anticoagulant activity over a long-term study at clinically relevant ACTs. STATEMENT OF SIGNIFICANCE: In artificial lungs, the large, densely-packed blood contacting surface area of the hollow fiber bundle is critical for gas exchange but also creates rapid, surface-generated clot requiring significant anticoagulation. Monitoring of anticoagulation, thrombosis, and resultant complications has kept permanent respiratory support from becoming a clinical reality. In this study, we use a hollow fiber material that generates nitric oxide (NO) to prevent platelet activation at the blood contacting surface. This material is tested in vivo in a miniature artificial lung and compared against the clinical standard. Results indicated significantly reduced clot formation. Surface-focused anticoagulation like this should reduce complication rates and allow for permanent respiratory support by extending the functional lifespan of artificial lungs and can further be applied to other medical devices.


Assuntos
Órgãos Artificiais , Cobre/química , Pulmão , Nanopartículas Metálicas/química , Óxido Nítrico , S-Nitroso-N-Acetilpenicilamina , Animais , Dimetilpolisiloxanos , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Nylons , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacocinética , S-Nitroso-N-Acetilpenicilamina/farmacologia , Ovinos , Fatores de Tempo
13.
Acta Biomater ; 84: 77-87, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471478

RESUMO

A dual functional polyurethane (PU) film that mimics aspects of blood vessel inner surfaces by combining surface texturing and nitric oxide (NO) release was fabricated through a soft lithography two-stage replication process. The fabrication of submicron textures on the polymer surface was followed by solvent impregnation with the NO donor, S-nitroso-N-acetylpenicillamine (SNAP). An in vitro plasma coagulation assay showed that the biomimetic surface significantly increased the plasma coagulation time and also exhibited reduced platelet adhesion and activation, thereby reducing the risk of blood coagulation and thrombosis. A contact activation assay for coagulation factor XII (FXII) demonstrated that both NO release and surface texturing also reduced FXII contact activation, which contributes to the inhibition of plasma coagulation. The biomimetic surface was also evaluated for bacterial adhesion in plasma and results demonstrate that this combined strategy enables a synergistic effect to reduce bacterial adhesion of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa microorganisms. The results strongly suggest that the biomimetic modification with surface texturing and NO release provides an effective approach to improve the biocompatibility of polymeric materials in combating thrombosis and microbial infection. STATEMENT OF SIGNIFICANCE: (1) Developed a dual functional polyurethane (PU) film that mimics blood vessel inner surface by combining surface texturing and nitric oxide (NO) release for combatting biomaterial associated thrombosis and microbial infection. (2) Studied the blood coagulation response and bacterial adhesion to such biomimetic PU surfaces, and demonstrated that the combination of surface texturing and NO release synergistically reduced the platelet adhesion and bacterial adhesion in plasma, providing an effective approach to improve the biocompatibility of biomaterials used in blood-contacting medical devices. (3) The NO releasing surface significantly inhibits the plasma coagulation via the reduction of contact activation of FXII, indicating the multifunctional roles of NO in improving the biocompatibility of biomaterials in blood-contacting medical devices.


Assuntos
Bactérias/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Materiais Biomiméticos , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Óxido Nítrico , Adesividade Plaquetária/efeitos dos fármacos , Poliuretanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos , Óxido Nítrico/química , Óxido Nítrico/farmacologia , Poliuretanos/química , Poliuretanos/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia
14.
ACS Appl Mater Interfaces ; 11(38): 34652-34662, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483604

RESUMO

Modern crises in implantable or indwelling blood-contacting medical devices are mainly due to the dual problems of infection and thrombogenicity. There is a paucity of biomaterials that can address both problems simultaneously through a singular platform. Taking cues from the body's own defense mechanism against infection and blood clotting (thrombosis) via the endogenous gasotransmitter nitric oxide (NO), both of these issues are addressed through the development of a layered S-nitroso-N-acetylpenicillamine (SNAP)-doped polymer with a blended selenium (Se)-polymer interface. The unique capability of the SNAP-Se-1 polymer composites to explicitly release NO from the SNAP reservoir as well as generate NO via the incorporated Se is reported for the first time. The NO release from the SNAP-doped polymer increased substantially in the presence of the Se interface. The Se interface was able to generate NO in the presence of S-nitrosoglutathione (GSNO) and glutathione (GSH), demonstrating the capability of generating NO from endogenous S-nitrosothiols (RSNO). Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) traced distribution of elemental Se nanoparticles on the interface and the surface properties were evaluated by surface wettability and roughness. The SNAP-Se-1 efficiently inhibited the growth of bacteria and reduced platelet adhesion while showing minimal cytotoxicity, thus potentially eliminating the risks of systemic antibiotic and blood coagulation therapy. The SNAP-Se-1 exhibited antibacterial activity of ∼2.39 and ∼2.25 log reductions in the growth of clinically challenging adhered Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. SNAP-Se-1 also significantly reduced platelet adhesion by 85.5% compared to corresponding controls. A WST-8-based cell viability test performed on NIH 3T3 mouse fibroblast cells provided supporting evidence for the potential biocompatibility of the material in vitro. These results highlight the prospective utility of SNAP-Se-1 as a blood-contacting infection-resistant biomaterial in vitro which can be further tuned by application specificity.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Polímeros , S-Nitroso-N-Acetilpenicilamina , Selênio , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Nanopartículas , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Adesividade Plaquetária/efeitos dos fármacos , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacocinética , S-Nitroso-N-Acetilpenicilamina/farmacologia , Selênio/química , Selênio/farmacocinética , Selênio/farmacologia , Suínos
15.
Biomater Sci ; 6(12): 3189-3201, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30328426

RESUMO

Semi-crystalline thermoplastics are an important class of biomaterials with applications in creating extracorporeal and implantable medical devices. In situ release of nitric oxide (NO) from medical devices can enhance their performance via NO's potent anti-thrombotic, bactericidal, anti-inflammatory, and angiogenic activity. However, NO-releasing semi-crystalline thermoplastic systems are limited and the relationship between polymer crystallinity and NO release profile is unknown. In this paper, the functionalization of poly(ether-block-amide) (PEBA), Nylon 12, and polyurethane tubes, as examples of semi-crystalline polymers, with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) within, is demonstrated via a polymer swelling method. The degree of crystallinity of the polymer plays a crucial role in both SNAP impregnation and NO release. Nylon 12, which has a relatively high degree of crystallinity, exhibits an unprecedented NO release duration of over 5 months at a low NO level, while PEBA tubing exhibits NO release over days to weeks. As a new biomedical application of NO, the NO-releasing PEBA tubing is examined as a cannula for continuous subcutaneous insulin infusion. The released NO is shown to enhance insulin absorption into the bloodstream probably by suppressing the tissue inflammatory response, and thereby could benefit insulin pump therapy for diabetes management.


Assuntos
Antibacterianos/química , Anti-Inflamatórios/química , Sistemas de Infusão de Insulina , Óxido Nítrico/química , Animais , Antibacterianos/farmacologia , Ácidos Borônicos/química , Cristalização , Óxido Nítrico/administração & dosagem , Óxido Nítrico/farmacocinética , Nylons/química , Poliuretanos/química , S-Nitroso-N-Acetilpenicilamina/química , Ovinos , Staphylococcus/efeitos dos fármacos
16.
Biomater Sci ; 5(7): 1265-1278, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28560367

RESUMO

A novel dual functioning antimicrobial CarboSil 20 80A polymer material that combines physical topographical surface modification and nitric oxide (NO) release is prepared and evaluated for its efficacy in reducing bacterial adhesion in vitro. The new biomaterial is created via a soft lithography two-stage replication process to induce submicron textures on its surface, followed by solvent impregnation with the NO donor, S-nitroso-N-acetylpenicillamine (SNAP), to obtain long-term (up to 38 d) NO release. The NO releasing textured polymer surface is evaluated against four bacteria commonly known to cause infections in hospital settings and the results demonstrate that the combined strategy enables a synergistic effect on reducing the bacterial adhesion of Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Óxido Nítrico/química , Polímeros/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Propriedades de Superfície , Molhabilidade
17.
Acta Biomater ; 58: 421-431, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28579540

RESUMO

Although the use of biomedical devices in hospital-based care is inevitable, unfortunately, it is also one of the leading causes of the nosocomial infections, and thus demands development of novel antimicrobial materials for medical device fabrication. In the current study, a multi-defense mechanism against Gram-positive and Gram-negative bacteria is demonstrated by combining a nitric oxide (NO) releasing agent with a quaternary ammonium antimicrobial that can be covalently grafted to medical devices. Antibacterial polymeric composites were fabricated by incorporating an NO donor, S-nitroso-N-acetyl-penicillamine (SNAP) in CarboSil® polymer and top coated with surface immobilized benzophenone based quaternary ammonium antimicrobial (BPAM) small molecule. The results suggest that SNAP and BPAM individually have a different degree of toxicity towards Gram-positive and Gram-negative bacteria, while the SNAP-BPAM combination is effective in reducing both types of adhered viable bacteria equally well. SNAP-BPAM combinations reduced the adhered viable Pseudomonas aeruginosa by 99.0% and Staphylococcus aureus by 99.98% as compared to the control CarboSil films. Agar diffusion tests demonstrate that the diffusive nature of NO kills bacteria beyond the direct point of contact which the non-leaching BPAM cannot achieve alone. This is important for potential application in biofilm eradication. The live-dead bacteria staining shows that the SNAP-BPAM combination has more attached dead bacteria (than live) as compared to the controls. The SNAP-BPAM films have increased hydrophilicity and higher NO flux as compared to the SNAP films useful for preventing blood protein and bacterial adhesion. Overall the combination of SNAP and BPAM imparts different attributes to the polymeric composite that can be used in the fabrication of antimicrobial surfaces for various medical device applications. STATEMENT OF SIGNIFICANCE: A significant increase in the biomedical device related infections (BDRIs), inability of the currently existing antimicrobial strategies to combat them and a proportional rise in the associated morbidity demands development of novel antimicrobial surfaces. Some of the major challenges associated with the currently used therapeutics are: antibiotic resistance and cytotoxicity. In the current study, engineered polymeric composites with multi-defense mechanism were fabricated to kill bacteria via both active and passive mode. This was done by incorporating a nitric oxide (NO) donor S-nitroso-N-acetypenicillamine (SNAP) in a medical grade polymer (CarboSil®) and a benzophenone based quaternary ammonium antimicrobial small molecule (BPAM) was surface immobilized as the top layer. The developed biomaterial was tested with Gram-positive and Gram-negative strains and was found to be effective against both the strains resulting in up to 99.98% reduction in viable bacterial count. This preventative strategy can be used to fabricate implantable biomedical devices (such as catheters, stents, extracorporeal circuits) to not only significantly limit biofilm formation but also to reduce the antibiotic dose which are usually given post infections.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Doadores de Óxido Nítrico , Pseudomonas aeruginosa/crescimento & desenvolvimento , Compostos de Amônio Quaternário , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia
18.
J Control Release ; 225: 133-9, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26763376

RESUMO

Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) µmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Doadores de Óxido Nítrico/química , Ácido Poliglicólico/química , S-Nitroso-N-Acetilpenicilamina/química , Preparações de Ação Retardada/química , Microesferas , Óxido Nítrico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
19.
ACS Appl Mater Interfaces ; 8(9): 5898-905, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26859235

RESUMO

Nitric oxide (NO) has been heavily studied over the past two decades due to its multitude of physiological functions and its potential therapeutic promise. Of major interest is the desire to fabricate or coat implanted devices with an NO releasing material that will impart the appropriate dose and duration of NO release to positively mediate the biological response to the medical device, thereby improving its safety and efficacy. To date, this goal has not yet been achieved, despite very promising early research. Herein, we describe the synthesis and NO release properties of a novel NO donor which covalently links the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine (SNAP), to the macrocycle, cyclam (SNAP-cyclam). This compound can then be blended into a wide variety of polymer matrices, imparting NO release to the polymer system. This release can be initiated and controlled by transition metal catalysis, thermal degradation or photolytic release of NO from the composite NO-releasing material. SNAP-cyclam is capable of releasing physiologically relevant levels of NO for up to 3 months in vitro when blended into poly(l-lactic acid) thin films.


Assuntos
Compostos Heterocíclicos/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/síntese química , S-Nitroso-N-Acetilpenicilamina/química , Cromatografia Líquida de Alta Pressão , Cinética , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Poliésteres/química , S-Nitroso-N-Acetilpenicilamina/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
20.
ACS Appl Mater Interfaces ; 8(30): 19343-52, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27447022

RESUMO

Metal-organic frameworks (MOFs) have demonstrated promise in biomedical applications as vehicles for drug delivery, as well as for the ability of copper-based MOFs to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). Because NO is a participant in biological processes where it exhibits anti-inflammatory, antibacterial, and antiplatelet activation properties, it has received significant attention for therapeutic purposes. Previous work has shown that the water-stable MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or CuBTTri, produces NO from RSNOs and can be included within a polymeric matrix to form NO-generating materials. While such materials demonstrate potential, the possibility of MOF degradation leading to copper-related toxicity is a concern that must be addressed prior to adapting these materials for biomedical applications. Herein, we present the first cytotoxicity evaluation of an NO-generating CuBTTri/polymer composite material using 3T3-J2 murine embryonic fibroblasts and primary human hepatocytes (PHHs). CuBTTri/polymer films were prepared from plasticized poly(vinyl chloride) (PVC) and characterized via PXRD, ATR-FTIR, and SEM-EDX. Additionally, the ability of the CuBTTri/polymer films to enhance NO generation from S-nitroso-N-acetylpenicillamine (SNAP) was evaluated. Enhanced NO generation in the presence of the CuBTTri/polymer films was observed, with an average NO flux (0.90 ± 0.13 nmol cm(-2) min(-1)) within the range associated with antithrombogenic surfaces. The CuBTTri/polymer films were analyzed for stability in phosphate buffered saline (PBS) and cell culture media under physiological conditions for a 4 week duration. Cumulative copper release in both cell media (0.84 ± 0.21%) and PBS (0.18 ± 0.01%) accounted for less than 1% of theoretical copper present in the films. In vitro cell studies performed with 3T3-J2 fibroblasts and PHHs did not indicate significant toxicity, providing further support for the potential implementation of CuBTTri-based materials in biomedical applications.


Assuntos
Estruturas Metalorgânicas/química , Polímeros/química , Água/química , Células 3T3 , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Humanos , Estruturas Metalorgânicas/farmacologia , Camundongos , S-Nitroso-N-Acetilpenicilamina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA