RESUMO
The smallest fraction of plastic pollution, submicron plastics (SMPs <1 µm) are expected to be ubiquitous in the environment. No information is available about SMPs in peatlands, which have a key role in sequestering carbon in terrestrial ecosystems. It is unknown how these plastic particles might behave and interact with (micro)organisms in these ecosystems. Here, we show that the chemical composition of polystyrene (PS) and poly(vinyl chloride) (PVC)-SMPs influenced their adsorption to peat. Consequently, this influenced the accumualtion of SMPs by Sphagnum moss and the composition and diversity of the microbial communities in peatland. Natural organic matter (NOM), which adsorbs from the surrounding water to the surface of SMPs, decreased the adsorption of the particles to peat and their accumulation by Sphagnum moss. However, the presence of NOM on SMPs significantly altered the bacterial community structure compared to SMPs without NOM. Our findings show that peatland ecosystems can potentially adsorb plastic particles. This can not only impact mosses themselves but also change the local microbial communities.
Assuntos
Microbiota , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/microbiologia , Solo/química , Adsorção , Plásticos , BactériasRESUMO
The growing pollution of the environment with plastic debris is a global threat which urgently requires biotechnological solutions. Enzymatic recycling not only prevents pollution but also would allow recovery of valuable building blocks. Therefore, we explored the existence of microbial polyesterases in microbial communities associated with the Sphagnum magellanicum moss, a key species within unexploited bog ecosystems. This resulted in the identification of six novel esterases, which were isolated, cloned, and heterologously expressed in Escherichia coli The esterases were found to hydrolyze the copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT) and the oligomeric model substrate bis[4-(benzoyloxy)butyl] terephthalate (BaBTaBBa). Two promising polyesterase candidates, EstB3 and EstC7, which clustered in family VIII of bacterial lipolytic enzymes, were purified and characterized using the soluble esterase substrate p-nitrophenyl butyrate (Km values of 46.5 and 3.4 µM, temperature optima of 48°C and 50°C, and pH optima of 7.0 and 8.5, respectively). In particular, EstC7 showed outstanding activity and a strong preference for hydrolysis of the aromatic ester bond in PBAT. Our study highlights the potential of plant-associated microbiomes from extreme natural ecosystems as a source for novel hydrolytic enzymes hydrolyzing polymeric compounds. IMPORTANCE: In this study, we describe the discovery and analysis of new enzymes from microbial communities associated with plants (moss). The recovered enzymes show the ability to hydrolyze not only common esterase substrates but also the synthetic polyester poly(butylene adipate-co-butylene terephthalate), which is a common material employed in biodegradable plastics. The widespread use of such synthetic polyesters in industry and society requires the development of new sustainable technological solutions for their recycling. The discovered enzymes have the potential to be used as catalysts for selective recovery of valuable building blocks from this material.
Assuntos
Bactérias/enzimologia , Esterases/genética , Esterases/metabolismo , Poliésteres/metabolismo , Sphagnopsida/microbiologia , Butiratos/metabolismo , Hidrólise , Microbiota/genética , Microbiota/fisiologiaRESUMO
Wetlands are sources and sinks for nanoplastics (NPs), where adsorption and uptake by plants constitute a crucial pathway for NPs accumulation. This study found that Sphagnum exhibited a high potential (~89.75 %) to intercept NPs despite the lack of root systems and stomata. Two pathways for 100nm polystyrene NPs accumulation in Sphagnum were located: (i) Spiral interception and foliar adsorption. Efficient adsorption is credited to the micro/nano-interlocked leaf structure, which is porous, hydrophilic and rough. (ii) Intracellular enrichment through pores. Fluorescence tracking indicates pseudo-leaves (lateral > cephalic branches) as primary organs for internalization. Accumulation of differently functionalized NPs was characterized: PS-Naked-NPs (PS), PS-COOH-NPs (PC) and PS-NH2-NPs (PN) were all largely retained by pathway (i), while pathway (ii) mainly uptake PN and PC. Unlike PS aggregation in transparent cells, PC enrichment in chloroplast cells and PN in intercellular spaces reduced pigment content and fluorescence intensity. Further, the effects of the accumulated NPs on the ecological functions of Sphagnum were evaluated. NPs reduce carbon flux (assimilation rate by 57.78 %, and respiration rate by 33.50%), significantly decreasing biomass (PS = 13.12 %, PC = 26.48 %, PN = 35.23 %). However, toxicity threshold was around 10 µg/mL, environmental levels (≤1 µg/mL) barely affected Sphagnum. This study advances understanding of the behavior and fate of NPs in non-vascular plants, and provides new perspectives for developing Sphagnum substrates for NPs interception.
Assuntos
Poliestirenos , Sphagnopsida , Áreas Alagadas , Adsorção , Nanopartículas , Poluentes Químicos da ÁguaRESUMO
Peatland degradation through drainage and peat extraction have detrimental environmental and societal consequences. Rewetting is an option to restore lost ecosystem functions, such as carbon storage, biodiversity and nutrient sequestration. Peat mosses (Sphagnum) are the most important peat-forming species in bogs. Most Sphagnum species occur in nutrient-poor habitats; however, high growth rates have been reported in artificial nutrient-rich conditions with optimal water supply. Here, we demonstrate the differences in nutrient dynamics of 12 Sphagnum species during their establishment in a 1-year field experiment at a Sphagnum paludiculture area in Germany. The 12 species are categorized into three groups (slower-, medium- and fast-growing). Establishment of peat mosses is facilitated by constant supply of nutrient-rich, low pH, and low alkalinity surface water. Our study shows that slower-growing species (S. papillosum, S. magellancium, S. fuscum, S. rubellum, S. austinii; often forming hummocks) displayed signs of nutrient imbalance. These species accumulated higher amounts of N, P, K and Ca in their capitula, and had an elevated stem N:K quotient (>3). Additionally, this group sequestered less C and K per m2 than the fast and medium-growing species (S. denticulatum, S. fallax, S. riparium, S. fimbriatum, S. squarrosum, S. palustre, S. centrale). Lower lawn thickness may have amplified negative effects of flooding in the slower-growing species. We conclude that nutrient dynamics and carbon/nutrient sequestration rates are species-specific. For bog restoration, generating ecosystem services or choosing suitable donor material for Sphagnum paludiculture, it is crucial to consider their compatibility with prevailing environmental conditions.
Assuntos
Sphagnopsida , Áreas Alagadas , Ecossistema , Solo , Nutrientes , Carbono/metabolismoRESUMO
A gram-negative, facultatively anaerobic, chemo-organotrophic, non-pigmented, slow-growing bacterium was isolated from acidic Sphagnum peat and designated strain TPB6017(T). Cells of this strain were long rods that multiplied by normal cell division and were motile by means of a single flagellum. Cells grew under reduced oxygen tension and under anoxic conditions and were able to ferment sugars and several polysaccharides, including amorphous and crystalline cellulose. Strain TPB6017(T) was a psychrotolerant acidophile capable of growth between pH 3.0 and 7.5 (optimum 4.5-5.0) and at 4-35 °C (optimum 20-28 °C). It was extremely sensitive to salt stress; growth was inhibited at NaCl concentrations above 0.1â% (w/v). The major fatty acids were iso-C(15â:â0) and iso-C(17â:â1)ω9c; the polar lipids were phosphatidylethanolamine and a number of phospholipids and aminophospholipids with an unknown structure. The quinone was MK-8. The DNA G+C content was 57.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that strain TPB6017(T) was a member of subdivision 1 of the phylum Acidobacteria and belonged to a phylogenetic lineage defined by the acidophilic aerobic chemo-organotroph Acidobacterium capsulatum (92.3â% sequence similarity). However, cell morphology, type of flagellation, the absence of pigment, differences in fatty acid and polar lipid composition, possession of a cellulolytic capability, inability to grow under fully oxic conditions and good growth in anoxic conditions distinguished strain TPB6017(T) from A. capsulatum. Therefore, it is proposed that strain TPB6017(T) represents a novel acidobacterium species in a new genus, Telmatobacter bradus gen. nov., sp. nov.; strain TPB6017(T) (â=âDSM 23630(T)â=âVKM B-2570(T)) is the type strain.
Assuntos
Acidobacteria/classificação , Acidobacteria/isolamento & purificação , Celulose/metabolismo , Microbiologia do Solo , Sphagnopsida/microbiologia , Acidobacteria/genética , Acidobacteria/fisiologia , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , Ácidos Graxos/análise , Genes de RNAr , Genótipo , Lipídeos/análise , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Vitamina K 2/análiseRESUMO
The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands ("bogs") are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone ("PVP"), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog-62 ± 16%-than the fen-14 ± 4%. This difference was found to be more substantial with regards to methane production-wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs' extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.
Assuntos
Carbono/metabolismo , Fenóis/química , Sphagnopsida/metabolismo , Anaerobiose , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cinética , Metano/química , Metano/metabolismo , Pergelissolo , Povidona/química , Sphagnopsida/químicaRESUMO
Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH.
Assuntos
Bactérias/genética , Celulose/metabolismo , Microbiologia do Solo , Sphagnopsida/microbiologia , Áreas Alagadas , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Dióxido de Carbono/metabolismo , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitrogênio/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , TemperaturaRESUMO
Large urban trees have many benefits. However, falling branches pose a serious hazard to both people and infrastructure. In several tree species, aerial roots grow down from branches to the ground. These roots are capable of thickening to support the branches, lessening the risk of tree failure. Unfortunately, in urban environments most aerial roots die before reaching the ground. Here, we report a new method for encouraging aerial roots to reach the ground, developed by the second-year botany class at UNSW Sydney. Our class tested three experimental treatments on aerial roots of Ficus rubiginosa Desf. ex Vent. (Port Jackson Fig)-PVC pipes filled with sphagnum moss, PVC pipes filled with potting mix, and PVC pipes filled with sphagnum moss and topped with funnels to catch extra rainwater. All three treatments significantly improved aerial root growth, with 26 of the 30 (87%) treatment roots reaching the ground after one year compared to 0 of the 10 control roots. Our method was successful for roots up to 3 m above the ground, suggesting the potential growth rate of aerial roots is substantial when conditions are favourable. Our novel approach is an attractive and cost-effective alternative to slings and other artificial supports. This project is an example of using undergraduate practical classes to teach science while simultaneously addressing important real-world problems.
Assuntos
Ficus/anatomia & histologia , Horticultura/métodos , Componentes Aéreos da Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Austrália , Fenômenos Biológicos , Cloreto de Polivinila , Sphagnopsida , ÁrvoresRESUMO
GOAL, SCOPE AND BACKGROUND: During the last decades, a technique for assessing atmospheric deposition of heavy elements was developed based on the principle that samples of moss are able to accumulate elements and airborne particles from rain, melting snow and dry deposition. Despite a broad interest in bioindication there are still ongoing works aimed at the preparation of a standard procedure allowing for a comparison of research carried out in various areas. This is why the comparison of living and dry moss of the same species and growth site seems to be interesting, logical and promising. A most reliable approach seems to be the application of bioindication connected with multivariate statistics and efficient visualization techniques in the interpretation of monitoring data. The aim of this study was: (i) to present cumulative properties of transplanted Sphagnum palustre moss with differentiation into dry and living biomaterial; (ii) to determine and geographically locate types of pollution sources responsible for a structure of the monitoring data set; (iii) to visualize geographical distribution of analytes in the Gdansk metropolitan area and to identify the high-risk areas which can be targeted for environmental hazards and public health. MATERIALS AND METHODS: A six month air pollution study based on Sphagnum palustre bioindication is presented and a simplified procedure of the experiment is given. The study area was located at the mouth of the Vistula River on the Baltic Sea, in Gdansk City (Poland). Sphagnum palustre was selected for research because of its extraordinary morphological properties and its ease in being raised. The capability of dry and living moss to accumulate elements characteristic for anthropogenic and natural sources was shown by application of Principal Component Analysis. The high-risk areas and pollution profiles are detected and visualized using surface maps based on Kriging algorithm. RESULTS: The original selection of elements included all those that could be reliably determined by Neutron Activation Analysis in moss samples. Elimination of variables covered the elements whose concentrations in moss were lower than the reported detection limits for INAA for most observations or in cases where particular elements did not show any variation. Eighteen elements: a, Ca, Sc, Fe, Co, Zn, As, Br, Mo, Sb, Ba, La, Ce, Sm, Yb, Lu, Hf, Th, were selected for the research presented. DISCUSSION: Two runs of PCA were performed since, in the first-run a heavy polluted location (Stogi - 'Sto') understood as outlier in the term of PCA approach was detected and results in the form of block diagrams and surface maps were presented. As ensues from the first-run PCA analysis, the factor layout for both indicators is similar but not identical due to the differences in the elements accumulation mechanism. Three latent factors ('phosphatic fertilizer plant impact', 'urban impact' and 'marine impact') explain over 89% and 82% of the total variance for dry and living moss respectively. In the second-run PCA three latent factors are responsible for the data structure in both moss materials. However, in the case of dry moss analysis these factors explain 85% of the total variance but they are rather hard to interpret. On the other hand living moss shows the same pattern as in first-run PCA. Three latent factors explain over 84% of the total variance in this case. The pollution profiles extracted in PCA of dry moss data differ tremendously between both runs, while no deterioration was found after removal of Stogi from data set in case of living moss. Performance of the second-run PCA with exception of Stogi as a heavy polluted location has led to the conclusion that living moss shows better indication properties than dry one. CONCLUSIONS: While using moss as wet and dry deposition sampier it is not possible to calculate deposition values since the real volume of collected water and dust is hard to estimate due to a splash effect and irregular surface. Therefore, accumulation values seam to be reasonable for moss-based air pollution surveys. Both biomaterials: dry and living Sphagnum palustre show cumulative properties relative to elements under interest. Dry moss has a very loose collection of the atmospheric particles, which can also easily get lost upon rinsing with rainwater running through exposed dry moss material. The living moss may, on the contrary, incorporate the elements in its tissue, thus being less susceptible to rinsing and thus better reflecting the atmospheric conditions. Despite the differences in element uptake and uphold capabilities dry and living moss reflect characteristic anthropogenic and natural profiles. Visible differences in impacts' map coverage exist mostly due to the accumulation mechanisms differentiating dry from living moss. However, in case of each indicator 'phosphatic fertilizer plant impact' is recognized as the strongest pollution source present in examined region. RECOMMENDATIONS AND PERSPECTIVES: General types of pollution sources responsible for a structure of monitoring data set were determined as high-risk/low-risk areas and visualized in form of geographic distribution maps. These locations can be targeted for environmental hazards and public health. Chemometric results in the form of easy defined surface maps can became a powerful instrument in hands of decision-makers working in the field of sustainable development implementation.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Sphagnopsida/química , Cidades , Análise de Ativação de Nêutrons , Polônia , Análise de Componente PrincipalRESUMO
Global warming and peat bogs drying are having a strong negative effect on the survival of endangered peat mosses. Here, we aimed to identify ultrastructural and physiological trait variation during dehydration and rehydration in the (sub-)meristematic cells of buds among clonally propagated individuals of Sphagnum denticulatum in relation to their ecological origin. We cultivated five clones in common garden conditions (CGCs) to exclude a carryover effect and we subsequently water-stressed (-40â¯MPa) and rehydrated (7 days) them. For the ultrastructure analysis, over 1280 measurements were recorded for 34 traits. Compared with the control, the treatment led to alterations in organelles that appeared to be ecotype- and genotype-dependent and characteristic for desiccation-sensitive mosses. Also, the recovery of chloroplasts, as measured by the initial and maximal fluorescence yield, were incomplete for all studied plants indicating desiccation sensitivity. Terrestrial genotypes possessed better recovery capability than did aquatic genotypes, suggesting an adaptation of the former to tolerate unpredictable terrestrial conditions in time and space. Genotype-specific requirements of water availability in the original environments should be considered before transplanting gametophytes for peatland restoration programs.
Assuntos
Conservação dos Recursos Naturais , Dessecação , Ecótipo , Sphagnopsida/ultraestrutura , Estresse Fisiológico , Diferenciação Celular , Meristema/citologia , Meristema/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Sphagnopsida/anatomia & histologia , Água/metabolismoRESUMO
Mosses are well known as biomonitors of fresh water for metal pollutants, but no studies were reported so far about their ability to intercept plastic particles, although this kind of pollution has become an urgent issue worldwide. In the present work, the interaction between the moss Sphagnum palustre L. cultured in vitro and polystyrene nanoparticles (NPs) was studied for the first time in a laboratory experiment, in the view of using moss transplants for detecting microplastics in fresh water environments. The ability of S. palustre to intercept and retain polystyrene, and the effects of vitality and post-exposure washing on NP retention by moss were tested. Fluorescence microscope observations showed that polystyrene NPs were retained by moss leaves in form of small (the most abundant fraction) and large aggregates. Particle count analysis highlighted that the number of particles increased while increasing the exposure time. Moreover, moss devitalization favored NP accumulation, likely because of cell membrane damages occurred in dead moss material. Post-exposure washing induced a loss of larger aggregates, suggesting that exposure time is a key point to be carefully evaluated in field conditions. These results encourage the use of S. palustre transplants for monitoring microplastics contamination of fresh water environments.
Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Água Doce/análise , Plásticos/análise , Sphagnopsida/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Nanopartículas/química , Plásticos/toxicidade , Poliestirenos/químicaRESUMO
The abilities of some ascomycetes (Myxotrichaceae) from a Sphagnum bog in Alberta to degrade cellulose, phenolics, and Sphagnum tissue were compared with those of two basidiomycetes. Most Myxotrichaceae degraded cellulose and tannic acid, and removed cell-wall components simultaneously from Sphagnum tissues, whereas the basidiomycetes degraded cellulose and insoluble phenolics, and preferentially removed the polyphenolic matrix from Sphagnum cell walls. Mass losses from Sphagnum varied from up to 50% for some ascomycetes to a maximum of 35% for the basidiomycetes. The decomposition of Sphagnum by the Myxotrichaceae was analogous to the white rot of wood and indicates that these fungi have the potential to cause significant mineralization of carbon in bogs.
Assuntos
Ascomicetos/metabolismo , Basidiomycota/metabolismo , Sphagnopsida/microbiologia , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Celulose/metabolismo , Microscopia Eletrônica de Varredura , Doenças das Plantas/microbiologia , Microbiologia do Solo , Sphagnopsida/ultraestrutura , Taninos/metabolismoRESUMO
This paper presents the results of an experiment carried out for the first time in situ to select a treatment to devitalize mosses for use in active biomonitoring of water pollution. Three devitalizing treatments for the aquatic moss Fontinalis antipyretica were tested (i.e. oven-drying at 100 °C, oven-drying with a 50-80-100 °C temperature ramp, and boiling in water), and the effects of these on loss of material during exposure of the transplants and on the accumulation of different heavy metals and metalloids were determined. The suitability of using devitalized samples of the terrestrial moss Sphagnum denticulatum to biomonitor aquatic environments was also tested. The structure of mosses was altered in different ways by the devitalizing treatments. Devitalization by boiling water led to significantly less loss of material (p < 0.01) than the oven-drying treatments. However, devitalization by oven-drying with a temperature ramp yielded more stable results in relation to both loss of material and accumulation of elements. With the aim of standardizing the moss bag technique, the use of F. antipyretica devitalized by oven-drying with a temperature ramp is recommended, rather than other devitalization treatments or use of S. denticulatum.
Assuntos
Briófitas/efeitos dos fármacos , Monitoramento Ambiental/métodos , Bryopsida/efeitos dos fármacos , Metaloides/toxicidade , Metais Pesados/toxicidade , Rios , Especificidade da Espécie , Sphagnopsida/efeitos dos fármacos , Poluição da ÁguaRESUMO
The ability of four common vegetations - wood, grass, compost, and peat moss - to remove cadmium, chromium, and lead from dilute aqueous solutions is investigated. Dried ground vegetations are immobilized in polysulfone, and poly (bisphenyl A) carbonate to form spherical beads through a phase inversion process. The beads are contacted with a dilute aqueous solution containing metal ions of interest. The removal of metal ions from the solution is monitored over the course of the experiment and the first-order kinetics parameters estimated. The rates of removal as well as the equilibrium bead loadings are shown to be affected by both the choice of vegetation and the choice of polymer.
Assuntos
Metais Pesados/isolamento & purificação , Poaceae/metabolismo , Cimento de Policarboxilato/metabolismo , Polímeros/metabolismo , Solo , Sphagnopsida/metabolismo , Sulfonas/metabolismo , Madeira , Cádmio/isolamento & purificação , Carbonato de Cálcio , Carbonatos , Cromo/isolamento & purificação , Citratos , Combinação de Medicamentos , Cinética , Chumbo/isolamento & purificação , Óxido de Magnésio , Água , Poluentes da Água/isolamento & purificação , Poluição da Água/prevenção & controleRESUMO
The primary objective of the present study was to develop inexpensive soil amendments that can be applied to enhance the adsorption of energetic compounds on military training ranges, thus limiting the potential for these compounds to migrate to groundwater. Adsorption and desorption isotherms were determined for 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with a wide variety of natural and man-made adsorbents, including wheat straw, sawdust, peat moss, ground rubber tires, and clays. Among the various adsorbents tested, peat moss proved to be the most effective sorbent for the three explosives. The adsorption coefficients (Kd(s)) for TNT and RDX with peat (310 and 87 L/kg, respectively) were at least two orders of magnitude higher than that determined for adsorption of these energetics with two surface soils. The adsorption-desorption isotherms for the explosives showed considerable hysteresis (Kd(s) < Kd(d)) with some of the solid adsorbents, suggesting that the sorption process is not readily reversible but, rather, that some fraction of the adsorbed contaminant is either irreversibly bound or present as a slowly desorbed fraction. The data indicate that the application of specific adsorbents to soils at military impact ranges may significantly improve the protection of local groundwater resources.
Assuntos
Azocinas/química , Poluição Ambiental/prevenção & controle , Compostos Heterocíclicos com 1 Anel/química , Poluentes do Solo/análise , Triazinas/química , Trinitrotolueno/química , Adsorção , Silicatos de Alumínio , Argila , Cinética , Borracha , Sphagnopsida , MadeiraRESUMO
Sphagnum wound dressings can be 3-4 times as absorbent as cotton equivalents, but they also react chemically with proteins of all kinds. This reactivity gives them the potential of immobilizing whole bacterial cells as well as the enzymes, exotoxins, and lysins secreted by the most invasive pathogens. Once immobilized, enzymes and (by inference) exotoxins and lysins are rapidly inactivated by a Maillard reaction. The complex pectin in Sphagnum is structurally similar to known, immunostimulatory pectins from other plants, including some that are traditionally used for wound healing.
Assuntos
Celulose/uso terapêutico , Reação de Maillard , Curativos Oclusivos , Preparações de Plantas/uso terapêutico , Sphagnopsida/química , Cicatrização , Animais , Aderência Bacteriana , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas , Celulose/toxicidade , Enzimas Imobilizadas , Leucócitos/efeitos dos fármacos , Preparações de Plantas/toxicidade , Pele/efeitos dos fármacos , Pele/lesões , SuínosRESUMO
Young children with their hand-to-mouth activity may be exposed to contaminated soils. However few studies assessing exposure of organic compounds sequestrated in soil were realized. The present study explores the impact of different organic matters on retention of NDL-PCBs during digestive processes using commercial humic substances in a close digestive model of children: the piglet. Six artificial soils were used. One standard soil, devoid of organic matter, and five amended versions of this standard soil with either fulvic acid, humic acid, Sphagnum peat, activated carbon or a mix of Sphagnum peat and activated carbon (95â¶5) (SPAC) were prepared. In order to compare the different treatments, we use spiked oil and negative control animals. Forty male piglets were randomly distributed in 7 contaminated and one control groups (n = 5 for each group). During 10 days, the piglets were fed artificial soil or a corn oil spiked with 19,200 ng of Aroclor 1254 per g of dry matter (6,000 ng.g⻹ of NDL-PCBs) to achieve an exposure dose of 1,200 ng NDL-PCBs.Kg⻹ of body weight per day. NDL-PCBs in adipose tissue were analyzed by GC-MS. Fulvic acid reduced slightly the bioavailability of NDL-PCBs compared to oil. Humic acid and Sphagnum peat reduced it significantly higher whereas activated carbon reduced the most. Piglets exposed to soil containing both activated carbon and Shagnum peat exhibited a lower reduction than soil with only activated carbon. Therefore, treatment groups are ordered by decreasing value of relative bioavailability as following: oil ≥ fulvic acid>Sphagnum peat ≥ Sphagnum peat and activated carbon ≥ Humic acid>>activated carbon. This suggests competition between Sphagnum peat and activated carbon. The present study highlights that quality of organic matter does have a significant effect on bioavailability of sequestrated organic compounds.
Assuntos
Substâncias Húmicas , Bifenilos Policlorados/farmacocinética , Poluentes do Solo/farmacocinética , Sphagnopsida , Tecido Adiposo/química , Animais , Benzopiranos/farmacologia , Disponibilidade Biológica , Carvão Vegetal/farmacologia , Poluição Ambiental/análise , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Projetos Piloto , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Poluentes do Solo/análise , SuínosRESUMO
We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na(+). By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g(-1) (after 10 cycles, 50 mA g(-1)), with â¼150 mAh g(-1) of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g(-1) at the 210th cycle, stable capacity of 203 mAh g(-1) at 500 mA g(-1)).
Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono/química , Sódio/química , Sphagnopsida , Biomassa , Carbono/química , Difusão , Eletroquímica , Eletrodos , Eletrólitos , Grafite/química , Íons , Lítio/química , Nanotecnologia , Polímeros/química , Solo , Sphagnopsida/química , Sphagnopsida/citologia , Propriedades de Superfície , TemperaturaRESUMO
Increased decomposition rates in boreal peatlands with global warming might increase the release of atmospheric greenhouse gases, thereby producing a positive feedback to global warming. How temperature influences microbial decomposers is unclear. We measured in vitro rates of decomposition of senesced sedge leaves and rhizomes (Carex aquatilis), from a fen, and peat moss (Sphagnum fuscum), from a bog, at 14 and 20 degrees C by the three most frequently isolated fungi and bacteria from these materials. Decomposition rates of the bog litter decreased (5- to 17-fold) with elevated temperatures, and decomposition of the sedge litters was either enhanced (2- to 30-fold) or remained unaffected by elevated temperatures. The increased temperature regime always favoured fungal over bacterial decomposition rates (2- to 3-fold). Different physiological characteristics of these microbes suggest that fungi using polyphenolic polymers as a carbon source cause greater mass losses of these litters. Litter quality exerted a stronger influence on decomposition at elevated temperatures, as litter rich in nutrients decomposed more quickly than litter poorer in nutrients at higher temperatures (8.0%-25.7% for the sedge litters vs. 0.2% for the bryophyte litter). We conclude that not all peatlands may provide a positive feedback to global warming. Cautious extrapolation of our data to the ecosystem level suggests that decomposition rates in fens may increase and those in bogs may decrease under a global warming scenario.
Assuntos
Microbiologia Ambiental , Fluoretos Tópicos/metabolismo , Sphagnopsida/metabolismo , Sphagnopsida/microbiologia , Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Ecossistema , Fungos/metabolismo , Efeito Estufa , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , TemperaturaRESUMO
Spiral secondary walls are found in hyaline cells of Sphagnum, in the elaters of most liverworts, and in elaters of the hornwort Megaceros. Recent studies on these cells suggest that cytoskeletal and ultrastructural processes involved in cell differentiation and secondary wall formation are similar in bryophytes and vascular plant tracheary elements. To examine differences in wall structure, primary and secondary wall constituents of the hyaline cells of Sphagnum novo-zelandicum and elaters of the liverwort Radula buccinifera and the hornwort Megaceros gracilis were analyzed by immunohistochemical and chemical methods. Anti-arabinogalactan-protein antibodies, JIM8 and JIM13, labeled the central fibrillar secondary wall layer of Megaceros elaters and the walls of Sphagnum leaf cells, but did not label the walls of Radula elaters. The CCRC-M7 antibody, which detects an arabinosylated (1-->6)-linked beta-galactan epitope, exclusively labeled hyaline cells in Sphagnum leaves and the secondary walls of Radula elaters. Anti-pectin antibodies, LM5 and JIM5, labeled the primary wall in Megaceros elaters. LM5 also labeled the central layer of the secondary wall but only during formation. In Radula elaters, JIM5 and another anti-pectin antibody, JIM7, labeled the primary wall. The distribution of arabinogalactan-proteins and pectic polysaccharides restricted to specific wall types and stages of development provides evidence for the developmental and functional regulation of cell wall composition in bryophytes. Monosaccharide-linkage analysis of Sphagnum leaf cell walls suggests they contain polysaccharides similar to those of higher plants. The most abundant linkage was 4-Glc, typical of cellulose, but there was also evidence for xyloglucans, 4-linked mannans, 4-linked xylans and rhamnogalacturonan-type polysaccharides.