RESUMO
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue-tooth.
Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Estrutura Terciária de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Osteoclasts derived from hematopoietic cells are activated on bone surface. To resorb bone, osteoclasts release acid and lysosome acid hydrolase via membrane transport. Prostate transmembrane protein androgen induced 1 (Pmepa1) is a type I transmembrane protein that regulates proliferation, migration, and metastasis of cancer cells. Because recent reports showed that Pmepa1 is involved in membrane transport in cancer cells, we investigated the role of Pmepa1 in osteoclast function. Pmepa1 expression was barely detected in osteoclasts formed on plastic surfaces in vitro, but was markedly increased in activated osteoclasts formed on calcified matrix. Inhibitors of bone resorption, such as alendronate, bafilomycin A1, and the PI3K inhibitor LY294002, suppressed the expression of Pmepa1 in osteoclasts. Knockdown of Pmepa1 expression impaired bone resorption activity and inhibited formation of a ring-like, actin-rich podosome belt that is essential for osteoclast function. Pmepa1 protein localized to lysosomes in osteoclasts. In addition, in sites of bone destruction observed in rats with adjuvant-induced arthritis, a marked high level of Pmepa1 expression was associated with the osteoclasts' resorbing bone. Our results suggest that Pmepa1 is a critical regulator of bone resorption and is a promising marker for activated osteoclasts and a potential therapeutic target in pathologic bone destruction.-Xu, X., Hirata, H., Shiraki, M., Kamohara, A., Nishioka, K., Miyamoto, H., Kukita, T., Kukita, A. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption.