Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.598
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34174187

RESUMO

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Assuntos
Epigenômica , Imunidade/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Análise de Célula Única , Transcrição Gênica , Vacinação , Adolescente , Adulto , Antibacterianos/farmacologia , Antígenos CD34/metabolismo , Antivirais/farmacologia , Reprogramação Celular , Cromatina/metabolismo , Citocinas/biossíntese , Combinação de Medicamentos , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Imunidade Inata/genética , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Interferon Tipo I/metabolismo , Masculino , Células Mieloides/metabolismo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Receptores Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcriptoma/genética , Adulto Jovem , alfa-Tocoferol/farmacologia
2.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33306955

RESUMO

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Assuntos
Bactérias/metabolismo , Fatores Imunológicos/metabolismo , Ixodes/fisiologia , Pele/microbiologia , Simbiose , Animais , Antibacterianos/farmacologia , Biocatálise , Parede Celular/metabolismo , Comportamento Alimentar , Feminino , Trato Gastrointestinal/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Modelos Moleculares , Peptidoglicano/metabolismo , Filogenia , Saliva/metabolismo , Glândulas Salivares/metabolismo , Staphylococcus epidermidis/fisiologia , Homologia Estrutural de Proteína , Especificidade por Substrato , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 121(17): e2315361121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621130

RESUMO

Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.


Assuntos
Antibacterianos , Biofilmes , Bactérias , Rifampina/farmacologia , Escherichia coli/genética , Aderência Bacteriana
4.
Proc Natl Acad Sci U S A ; 120(51): e2311396120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079554

RESUMO

Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polímeros , Animais , Humanos , Polímeros/química , Polimerização , Antibacterianos/farmacologia , Antibacterianos/química , Norbornanos/química , Cátions , Mamíferos
5.
Proc Natl Acad Sci U S A ; 120(37): e2305995120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669392

RESUMO

To minimize the incorrect use of antibiotics, there is a great need for rapid and inexpensive tests to identify the pathogens that cause an infection. The gold standard of pathogen identification is based on the recognition of DNA sequences that are unique for a given pathogen. Here, we propose and test a strategy to develop simple, fast, and highly sensitive biosensors that make use of multivalency. Our approach uses DNA-functionalized polystyrene colloids that distinguish pathogens on the basis of the frequency of selected short DNA sequences in their genome. Importantly, our method uses entire genomes and does not require nucleic acid amplification. Polystyrene colloids grafted with specially designed surface DNA probes can bind cooperatively to frequently repeated sequences along the entire genome of the target bacteria, resulting in the formation of large and easily detectable colloidal aggregates. Our detection strategy allows "mix and read" detection of the target analyte; it is robust and highly sensitive over a wide concentration range covering, in the case of our test target genome Escherichia coli bl21-de3, 10 orders of magnitude from [Formula: see text] to [Formula: see text] copies/mL. The sensitivity compares well with state-of-the-art sensing techniques and has excellent specificity against nontarget bacteria. When applied to real samples, the proposed technique shows an excellent recovery rate. Our detection strategy opens the way to developing a robust platform for pathogen detection in the fields of food safety, disease control, and environmental monitoring.


Assuntos
DNA , Poliestirenos , Antibacterianos , Coloides , Monitoramento Ambiental , Escherichia coli
6.
Chem Soc Rev ; 53(16): 8306-8378, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39005165

RESUMO

As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.


Assuntos
Bactérias , Humanos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Neoplasias/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Nanomedicina , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos
7.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953881

RESUMO

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Pneumonia Estafilocócica/terapia , Terapia por Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Verde de Indocianina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Humanos , Bacteriófagos/química
8.
Nano Lett ; 24(29): 8920-8928, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38874568

RESUMO

Blood-contacting medical devices (BCDs) require antithrombotic, antibacterial, and low-friction surfaces. Incorporating a nanostructured surface with the functional hydrogel onto BCD surfaces can enhance the performances; however, their fabrication remains challenging. Here, we introduce a straightforward method to fabricate a multifunctional hydrogel-based nanostructure on BCD surfaces using O-carboxymethyl chitosan-based short nanofibers (CMC-SNFs). CMC-SNFs, fabricated via electrospinning and cutting processes, are easily sprayed and entangled onto the BCD surface. The deposited CMC-SNFs form a robust nanoweb layer via fusion at the contact area of the nanofiber interfaces. The superhydrophilic CMC-SNF nanoweb surface creates a water-bound layer that effectively prevents the nonspecific adhesion of bacteria and blood cells, thereby enhancing both antimicrobial and antithrombotic performances. Furthermore, the CMC-SNF nanoweb exhibits excellent lubricity and durability on the bovine aorta. The demonstration results of the CMC-SNF coating on catheters and sheaths provide evidence of its capability to apply multifunctional surfaces simply for diverse BCDs.


Assuntos
Quitosana , Hidrogéis , Nanofibras , Quitosana/química , Quitosana/análogos & derivados , Nanofibras/química , Animais , Hidrogéis/química , Bovinos , Propriedades de Superfície , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
9.
Nano Lett ; 24(23): 6906-6915, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829311

RESUMO

Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Nanopartículas/química , Camundongos , Escherichia coli/efeitos dos fármacos , Polímeros/química , Indóis/química , Indóis/farmacologia , Terapia Fototérmica , Humanos , Staphylococcus aureus/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia
10.
Nano Lett ; 24(10): 3257-3266, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426843

RESUMO

The extracellular matrix (ECM) orchestrates cell behavior and tissue regeneration by modulating biochemical and mechanical signals. Manipulating cell-material interactions is crucial for leveraging biomaterials to regulate cell functions. Yet, integrating multiple cues in a single material remains a challenge. Here, near-infrared (NIR)-controlled multifunctional hydrogel platforms, named PIC/CM@NPs, are introduced to dictate fibroblast behavior during wound healing by tuning the matrix oxidative stress and mechanical tensions. PIC/CM@NPs are prepared through cell adhesion-medicated assembly of collagen-like polyisocyanide (PIC) polymers and cell-membrane-coated conjugated polymer nanoparticles (CM@NPs), which closely mimic the fibrous structure and nonlinear mechanics of ECM. Upon NIR stimulation, PIC/CM@NPs composites enhance fibroblast cell proliferation, migration, cytokine production, and myofibroblast activation, crucial for wound closure. Moreover, they exhibit effective and toxin removal antibacterial properties, reducing inflammation. This multifunctional approach accelerates healing by 95%, highlighting the importance of integrating biochemical and biophysical cues in the biomaterial design for advanced tissue regeneration.


Assuntos
Materiais Biocompatíveis , Cicatrização , Espécies Reativas de Oxigênio , Materiais Biocompatíveis/farmacologia , Polímeros/farmacologia , Matriz Extracelular , Hidrogéis/farmacologia , Antibacterianos/farmacologia
11.
Nano Lett ; 24(30): 9155-9162, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.


Assuntos
Escherichia coli , Grafite , Luz , Polietilenos , Staphylococcus epidermidis , Titânio , Grafite/química , Grafite/farmacologia , Grafite/efeitos da radiação , Titânio/química , Titânio/farmacologia , Polietilenos/química , Polietilenos/efeitos da radiação , Polietilenos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
12.
J Proteome Res ; 23(8): 3682-3695, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39037832

RESUMO

Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.


Assuntos
Acroleína , Metabolismo dos Carboidratos , Simulação de Acoplamento Molecular , Complexo Piruvato Desidrogenase , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimologia , Acroleína/farmacologia , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Antibacterianos/farmacologia , Glicólise/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteômica/métodos , Cárie Dentária/microbiologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo
13.
Clin Infect Dis ; 78(3): 544-553, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37946527

RESUMO

BACKGROUND: Oral cavity bacteria are the most frequent etiology of brain abscess. Yet, data on the clinical presentation and outcome are scarce. METHODS: We performed a nationwide, population-based study comprising all adults (aged ≥18 years) with brain abscess due to oral cavity bacteria in Denmark from 2007 through 2020. Prognostic factors for unfavorable outcome (Glasgow outcome scale, 1-4) were examined using modified Poisson regression to compute adjusted relative risks (RRs) with 95% confidence intervals (CIs). RESULTS: Among 287 identified patients, the median age was 58 years (interquartile range, 47-66), and 96 of 287 (33%) were female. Preexisting functional impairment was absent or mild in 253 of 280 (90%), and risk factors for brain abscess included immunocompromise in 95 of 287 (33%), dental infection in 68 of 287 (24%), and ear-nose-throat infection in 33 of 287 (12%). Overall, a neurological deficit was present in 246 of 276 (86%) and in combination with headache and fever in 64 of 287 (22%). Identified microorganisms were primarily the Streptococcus anginosus group, Fusobacterium, Actinomyces, and Aggregatibacter spp., and 117 of 287 (41%) were polymicrobial. Unfavorable outcome occurred in 92 of 246 (37%) at 6 months after discharge and was associated with antibiotics before neurosurgery (RR, 3.28; 95% CI, 1.53-7.04), rupture (RR, 1.89; 95% CI, 1.34-2.65), and immunocompromise (RR, 1.80; 95% CI, 1.29-2.51), but not with specific targeted antibiotic regimens. Identified dental infection was associated with favorable prognosis (RR, 0.58; 95% CI, .36-.93). CONCLUSIONS: Brain abscess due to oral cavity bacteria often occurred in previously healthy individuals without predisposing dental infections. Important risk factors for unfavorable outcome were rupture and immunocompromise. However, outcome was not associated with specific antibiotic regimens supporting carbapenem-sparing strategies.


Assuntos
Abscesso Encefálico , Adulto , Humanos , Feminino , Adolescente , Pessoa de Meia-Idade , Masculino , Estudos de Coortes , Abscesso Encefálico/tratamento farmacológico , Abscesso Encefálico/epidemiologia , Abscesso Encefálico/microbiologia , Bactérias , Antibacterianos/uso terapêutico , Boca
14.
J Am Chem Soc ; 146(8): 5128-5141, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38356186

RESUMO

Self-assembled polymer nanoparticles are promising antibacterials, with nonspherical morphologies of particular interest as recent work has demonstrated enhanced antibacterial activity relative to their spherical counterparts. However, the reasons for this enhancement are currently unclear. We have performed a multifaceted analysis of the antibacterial mechanism of action of 1D nanofibers relative to nanospheres by the use of flow cytometry, high-resolution microscopy, and evaluations of the antibacterial activity of pristine and tetracycline-loaded nanoparticles. Low-length dispersity, fluorescent diblock copolymer nanofibers with a crystalline poly(fluorenetrimethylenecarbonate) (PFTMC) core (length = 104 and 472 nm, height = 7 nm, width = 10-13 nm) and a partially protonated poly(dimethylaminoethyl methacrylate) (PDMAEMA) corona (length = 12 nm) were prepared via seeded growth living crystallization-driven self-assembly. Their behavior was compared to that of analogous nanospheres containing an amorphous PFTMC core (diameter of 12 nm). While all nanoparticles were uptaken into Escherichia coli W3110, crystalline-core nanofibers were observed to cause significant bacterial damage. Drug loading studies indicated that while all nanoparticle antibacterial activity was enhanced in combination with tetracycline, the enhancement was especially prominent when small nanoparticles (ca. 15-25 nm) were employed. Therefore, the identified differences in the mechanism of action and the demonstrated consequences for nanoparticle size and morphology control may be exploited for the future design of potent antibacterial agents for overcoming antibacterial resistance. This study also reinforces the requirement of morphological control over polymer nanoparticles for biomedical applications, as differences in activity are observed depending on their size, shape, and core-crystallinity.


Assuntos
Nanopartículas , Nanosferas , Nanopartículas/química , Polímeros/farmacologia , Polímeros/química , Antibacterianos/farmacologia , Antibacterianos/química , Tetraciclinas
15.
J Am Chem Soc ; 146(25): 17240-17249, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865148

RESUMO

Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.


Assuntos
Antibacterianos , Hidrogéis , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Testes de Sensibilidade Microbiana , Adesivos/química , Adesivos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Humanos , Estrutura Molecular , Química Click
16.
Emerg Infect Dis ; 30(6): 1125-1132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781928

RESUMO

During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.


Assuntos
Doenças dos Peixes , Peixes , Yersiniose , Yersinia ruckeri , Yersiniose/veterinária , Yersiniose/microbiologia , Yersiniose/epidemiologia , Animais , China/epidemiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/epidemiologia , Yersinia ruckeri/genética , Peixes/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana
17.
Anal Chem ; 96(21): 8641-8647, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38716697

RESUMO

Pathogenic bacterial infections, even at extremely low concentrations, pose significant threats to human health. However, the challenge persists in achieving high-sensitivity bacterial detection, particularly in complex samples. Herein, we present a novel sandwich-type electrochemical sensor utilizing bacteria-imprinted polymer (BIP) coupled with vancomycin-conjugated MnO2 nanozyme (Van@BSA-MnO2) for the ultrasensitive detection of pathogenic bacteria, exemplified by Staphylococcus aureus (S. aureus). The BIP, in situ prepared on the electrode surface, acts as a highly specific capture probe by replicating the surface features of S. aureus. Vancomycin (Van), known for its affinity to bacterial cell walls, is conjugated with a Bovine serum albumin (BSA)-templated MnO2 nanozyme through EDC/NHS chemistry. The resulting Van@BSA-MnO2 complex, serving as a detection probe, provides an efficient catalytic platform for signal amplification. Upon binding with the captured S. aureus, the Van@BSA-MnO2 complex catalyzes a substrate reaction, generating a current signal proportional to the target bacterial concentration. The sensor displays remarkable sensitivity, capable of detecting a single bacterial cell in a phosphate buffer solution. Even in complex milk matrices, it maintains outstanding performance, identifying S. aureus at concentrations as low as 10 CFU mL-1 without requiring intricate sample pretreatment. Moreover, the sensor demonstrates excellent selectivity, particularly in distinguishing target S. aureus from interfering bacteria of the same genus at concentrations 100-fold higher. This innovative method, employing entirely synthetic materials, provides a versatile and low-cost detection platform for Gram-positive bacteria. In comparison to existing nanozyme-based bacterial sensors with biological recognition materials, our assay offers distinct advantages, including enhanced sensitivity, ease of preparation, and cost-effectiveness, thereby holding significant promise for applications in food safety and environmental monitoring.


Assuntos
Compostos de Manganês , Óxidos , Polímeros , Staphylococcus aureus , Vancomicina , Staphylococcus aureus/isolamento & purificação , Compostos de Manganês/química , Óxidos/química , Vancomicina/química , Polímeros/química , Soroalbumina Bovina/química , Técnicas Eletroquímicas/métodos , Análise de Célula Única , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Limite de Detecção , Polímeros Molecularmente Impressos/química , Humanos
18.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978013

RESUMO

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Assuntos
Antibacterianos , Biofilmes , Sistemas de Liberação de Medicamentos , Lipossomos , Staphylococcus aureus Resistente à Meticilina , Vancomicina , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Lipossomos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Liberação Controlada de Fármacos
19.
Small ; 20(31): e2310870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453669

RESUMO

Developing tunable underwater adhesives that possess tough adhesion in service and easy detachment when required remains challenging. Herein, a strategy is proposed to design a near infrared (NIR) photothermal-responsive underwater adhesive by incorporating MXene (Ti3C2Tx)-based nanoparticles within isocyanate-modified polydimethylsiloxane (PDMS) polymer chains. The developed adhesive exhibits long-term and tough adhesion with an underwater adhesion strength reaching 5.478 MPa. Such strong adhesion is mainly attributed to the covalent bonds and hydrogen bonds at the adhesive-substrate interface. By making use of the photothermal-response of MXene-based nanoparticles and the thermal response of PDMS-based chains, the adhesive possesses photothermal-responsive performance, exhibiting sharply diminished adhesion under NIR irradiation. Such NIR-triggered tunable adhesion allows for easy and active detachment of the adhesive when needed. Moreover, the underwater adhesive exhibits photothermal antibacterial property, making it highly desirable for underwater applications. This work enhances the understanding of photothermal-responsive underwater adhesion, enabling the design of tunable underwater adhesives for biomedical and engineering applications.


Assuntos
Adesivos , Antibacterianos , Dimetilpolisiloxanos , Raios Infravermelhos , Antibacterianos/farmacologia , Antibacterianos/química , Adesivos/química , Adesivos/farmacologia , Dimetilpolisiloxanos/química , Nanopartículas/química , Escherichia coli/efeitos dos fármacos
20.
Small ; 20(3): e2302532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697021

RESUMO

Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Quimioterapia Combinada , Nanotecnologia , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA