RESUMO
Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.
Assuntos
Gengiva/imunologia , Imunidade nas Mucosas/imunologia , Vigilância Imunológica/imunologia , Mucosa Bucal/imunologia , Células Th17/imunologia , Animais , Citometria de Fluxo , Gengiva/microbiologia , Humanos , Mastigação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Mucosa Bucal/microbiologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The multipotent stem cells of our body have been largely harnessed in biotherapeutics. However, as they are derived from multiple anatomical sources, from different tissues, human mesenchymal stem cells (hMSCs) are a heterogeneous population showing ambiguity in their in vitro behavior. Intra-clonal population heterogeneity has also been identified and pre-clinical mechanistic studies suggest that these cumulatively depreciate the therapeutic effects of hMSC transplantation. Although various biomarkers identify these specific stem cell populations, recent artificial intelligence-based methods have capitalized on the cellular morphologies of hMSCs, opening a new approach to understand their attributes. A robust and rapid platform is required to accommodate and eliminate the heterogeneity observed in the cell population, to standardize the quality of hMSC therapeutics globally. Here, we report our primary findings of morphological heterogeneity observed within and across two sources of hMSCs namely, stem cells from human exfoliated deciduous teeth (SHEDs) and human Wharton jelly mesenchymal stem cells (hWJ MSCs), using real-time single-cell images generated on immunophenotyping by imaging flow cytometry (IFC). We used the ImageJ software for identification and comparison between the two types of hMSCs using statistically significant morphometric descriptors that are biologically relevant. To expand on these insights, we have further applied deep learning methods and successfully report the development of a Convolutional Neural Network-based image classifier. In our research, we introduced a machine learning methodology to streamline the entire procedure, utilizing convolutional neural networks and transfer learning for binary classification, achieving an accuracy rate of 97.54%. We have also critically discussed the challenges, comparisons between solutions and future directions of machine learning in hMSC classification in biotherapeutics.
Assuntos
Aprendizado de Máquina , Células-Tronco Mesenquimais , Análise de Célula Única , Humanos , Células-Tronco Mesenquimais/citologia , Análise de Célula Única/métodos , Imunofenotipagem/métodos , Citometria de Fluxo/métodos , Dente Decíduo/citologia , Processamento de Imagem Assistida por Computador/métodos , Geleia de Wharton/citologia , Células CultivadasRESUMO
Glycans, particularly sialic acids (SAs), play crucial roles in diverse biological processes. Despite their significance, analyzing specific glycans, such as sialic acids, on individual small extracellular vesicles (sEVs) has remained challenging due to the limited glycan capacity and substantial heterogeneity of sEVs. To tackle this issue, we introduce a chemical modification method of surface SAs on sEVs named PALEV-nFCM, which involves periodate oxidation and aniline-catalyzed oxime ligation (PAL), in conjunction with single-particle analysis using a laboratory-built nano-flow cytometer (nFCM). The specificity of the PALEV labeling method was validated using SA-decorated liposomes, enzymatic removal of terminal SA residues, lectin preblocking, and cellular treatment with an endogenous sialyltransferase inhibitor. Comprehensive mapping of SA distributions was conducted for sEVs derived from different sources, including conditioned cell culture medium (CCCM) of various cell lines, human saliva, and human red blood cells (RBCs). Notably, treatment with the calcium ionophore substantially increases the population of SA-positive RBC sEVs and enhances the SA content on individual RBC sEVs as well. nFCM provides a sensitive and versatile platform for mapping SAs of individual sEVs, which could significantly contribute to resolving the heterogeneity of sEVs and advancing the understanding of their glycosignature.
Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Humanos , Vesículas Extracelulares/química , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/química , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/citologia , Propriedades de Superfície , Nanotecnologia , Saliva/química , Compostos de Anilina/química , Tamanho da PartículaRESUMO
High dimensional flow cytometry relies on multiple laser sources to excite the wide variety of fluorochromes now available for immunophenotyping. Ultraviolet lasers (usually solid state 355 nm) are a critical part of this as they excite the BD Horizon™ Brilliant Ultraviolet (BUV) series of polymer fluorochromes. The BUV dyes have increased the number of simultaneous fluorochromes available for practical high-dimensional analysis to greater than 40 for spectral cytometry. Immunologists are now seeking to increase this number, requiring both novel fluorochromes and additional laser wavelengths. A laser in the deep ultraviolet (DUV) range (from ca. 260 to 320 nm) has been proposed as an additional excitation source, driven by the on-going development of additional polymer dyes with DUV excitation. DUV lasers emitting at 280 and 320 nm have been previously validated for flow cytometry but have encountered practical difficulties both in probe excitation behavior and in availability. In this article, we validate an even shorter DUV 266 nm laser source for flow cytometry. This DUV laser provided minimal excitation of the BUV dyes (a desirable characteristic for high-dimensional analysis) while demonstrating excellent excitation of quantum nanoparticles (Qdots) serving as surrogate fluorochromes for as yet undeveloped DUV excited dyes. DUV 266 nm excitation may therefore be a viable candidate for expanding high-dimensional flow cytometry into the DUV range and providing an additional incidental excitation wavelength for spectral cytometry. Excitation in a spectral region with strong absorption by nucleic acids and proteins (260-280 nm) did result in strong autofluorescence requiring care in fluorochrome selection. DUV excitation of endogenous molecules may nevertheless have additional utility for label-free analysis applications.
Assuntos
Corantes Fluorescentes , Luz , Corantes Fluorescentes/metabolismo , Citometria de Fluxo/métodos , Lasers , PolímerosRESUMO
Colloidal particles are considered to be essential building blocks for creating innovative self-assembled and active materials, for which complexity beyond that of compositionally uniform particles is key. However, synthesizing complex, multi-material colloids remains a challenge, often resulting in heterogeneous populations that require post-synthesis purification. Leveraging advances brought forward in the purification of biological samples, here we apply fluorescence-activated cell sorting (FACS) to sort colloidal clusters synthesized through capillary assembly. Our results demonstrate the effectiveness of FACS in sorting clusters based on size, shape, and composition. Notably, we achieve a sorting purity of up to 97% for clusters composed of up to 9 particles, albeit observing a decline in purity with increasing cluster size. Additionally, dimers of different colloids can be purified to over 97%, while linear and triangular trimers can be separated with up to 88% purity. This work underscores the potential of FACS as a promising and little-used tool in colloidal science to support the development of increasingly more intricate particle-based building blocks.
Assuntos
Coloides , Polímeros , Citometria de Fluxo/métodosRESUMO
Microplastics (MPs) in natural waters are heterogeneously mixed with other natural particles including algal cells and suspended sediments. An easy-to-use and rapid method for directly measuring and distinguishing MPs from other naturally present colloids in the environment would expedite analytical workflows. Here, we established a database of MP scattering and fluorescence properties, either alone or in mixtures with natural particles, by stain-free flow cytometry. The resulting high-dimensional data were analyzed using machine learning approaches, either unsupervised (e.g., viSNE) or supervised (e.g., random forest algorithms). We assessed our approach in identifying and quantifying model MPs of diverse sizes, morphologies, and polymer compositions in various suspensions including phototrophic microorganisms, suspended biofilms, mineral particles, and sediment. We could precisely quantify MPs in microbial phototrophs and natural sediments with high organic carbon by both machine learning models (identification accuracies over 93%), although it was not possible to distinguish between different MP sizes or polymer compositions. By testing the resulting method in environmental samples through spiking MPs into freshwater samples, we further highlight the applicability of the method to be used as a rapid screening tool for MPs. Collectively, this workflow can be easily applied to a diverse set of samples to assess the presence of MPs in a time-efficient manner.
Assuntos
Citometria de Fluxo , Aprendizado de Máquina , Microplásticos , Suspensões , Monitoramento Ambiental/métodos , Poluentes Químicos da ÁguaRESUMO
Flow cytometry plays a pivotal role in biotechnology by providing quantitative measurements for a wide range of applications. Nonetheless, achieving precise particle quantification, particularly without relying on counting beads, remains a challenge. In this study, we introduce a novel exhaustive counting method featuring a sample loop-based injection system that delivers a defined sample volume to a detection system to enhance quantification in flow cytometry. We systematically assess the performance characteristics of this system with micron-sized polystyrene beads, addressing issues related to sample introduction, adsorption, and volume measurement. Results underscore the excellent analytical performance of the proposed method, characterized by high linearity and repeatability. We compare our approach to counting bead-based measurements, and while an approximate bias value was observed, the measured values were found to be similar between the methods, demonstrating its comparability and reliability. This method holds great promise for improving the accuracy and precision of particle quantification in flow cytometry, with implications for various fields including healthcare and environmental monitoring.
Assuntos
Citometria de Fluxo , Tamanho da Partícula , Poliestirenos , Citometria de Fluxo/métodos , Poliestirenos/química , Reprodutibilidade dos Testes , MicroesferasRESUMO
AIMS: Dental pulp stem cells (DPSCs) contain a population of stem cells with a broad range of differentiation potentials, as well as more lineage-committed progenitors. Such heterogeneity is a significant obstacle to experimental and clinical applications. The aim of this study is to isolate and characterize a homogenous neuronal progenitor cell population from human DPSCs. METHODOLOGY: Polysialylated-neural cell adhesion molecule (PSA-NCAM+) neural progenitors were isolated from the dental pulp of three independent donors using magnetic-activated cell sorting (MACS) technology. Immunofluorescent staining with a panel of neural and non-neural markers was used to characterize the magnetically isolated PSA-NCAM+ fraction. PSA-NCAM+ cells were then cultured in Neurobasal A supplemented with neurotrophic factors: dibutyryl cyclic-AMP, neurotrophin-3, B27 and N2 supplements to induce neuronal differentiation. Both PSA-NCAM+ and differentiated PSA-NCAM+ cells were used in Ca2+ imaging studies to assess the functionality of P2X3 receptors as well as membrane depolarization. RESULTS: PSA-NCAM+ neural progenitors were isolated from a heterogeneous population of hDPSCs using magnetic-activated cell sorting and anti-PSA-NCAM MicroBeads. Flow cytometry analysis demonstrated that immunomagnetic sorting significantly increased the purity of PSA-NCAM+ cells. Immunofluorescent staining revealed expression of pan-neuronal and mature neuronal markers, PGP9.5 and MAP2, respectively, as well as weak expression of the mature sensory markers, peripherin and islet1. ATP-induced response was mediated predominately by P2X3 receptors in both undifferentiated and differentiated cells, with a greater magnitude observed in the latter. In addition, membrane depolarizations were also detected in cells before and after differentiation when loaded with fast-voltage-responding fluorescent molecule, FluoVolt™ in response to potassium chloride. Interestingly, only differentiated PSA-NCAM+ cells were capable of spontaneous membrane oscillations. CONCLUSIONS: In summary, DPSCs contain a population of neuronal progenitors with enhanced neural differentiation and functional neural-like properties that can be effectively isolated with magnetic-activated cell sorting (MACS).
Assuntos
Diferenciação Celular , Polpa Dentária , Citometria de Fluxo , Polpa Dentária/citologia , Humanos , Células Cultivadas , Células-Tronco Neurais , Ácidos Siálicos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Separação Imunomagnética , NeurôniosRESUMO
OBJECTIVE: This study assessed the cellular composition and effects of leukocyte-platelet-rich fibrin (L-PRF) exudate on whole blood platelets from healthy volunteers. Key objectives included evaluating leukocyte subpopulations, platelet activation markers, platelet-leukocyte interactions and quantifying inflammatory cytokines within the L-PRF exudate. MATERIALS AND METHODS: L-PRF was obtained from 20 healthy donors. Flow cytometry methodologies were used to assess intracellular calcium kinetics and activated GPIIbIIIa, and P-selectin expression. Leukocyte subpopulations and platelet-leukocyte interactions were characterized using monoclonal antibodies. Inflammatory cytokines (IL-8, IL-1ß, IL-6, IL-10, TNF, IL-12p70) within L-PRF exudate were quantified using a cytometric bead array. RESULTS: The expression of activated GPIIbIIIa, and P-selectin exhibited a significant increase (p < 0.001) when L-PRF exudate was added to platelets of whole blood. Regarding intracellular Ca2+ mobilization, the L-PRF exudate elicited significant responses (p < 0.001). L-PRF exudate contained different leukocytes populations, being TCD4 + the most representative of T cells. It was possible to stablish a profile of cytokines produced by the L-PRF exudate, with human IL-8 cytokine exhibiting the highest average (16.90 pg/mL). CONCLUSIONS: Despite the study limitations, the research yielded important insights: 1- L-PRF exudate can stimulate platelet activation, essential in healing, tissue inflammation and remodeling. 2-The presence of leukocyte subpopulations within L-PRF exudate reflexes its complexity and potential to enhance immune responses. 3-The analysis of inflammatory cytokines within L-PRF exudate revealed its immunomodulatory potential. These findings are valuable evidences for understanding the potential role of L-PRF exudate in regenerative dentistry and medicine, offering innovative therapeutic strategies. CLINICAL RELEVANCE: This research highlights crucial aspects that could significantly influence the clinical use of L-PRF exudate in the oral cavity. The findings support the application of L-PRF exudate in both surgical and regenerative dentistry, facilitating the development of innovative therapeutic strategies to enhance patient outcomes.
Assuntos
Plaquetas , Citocinas , Exsudatos e Transudatos , Citometria de Fluxo , Fibrina Rica em Plaquetas , Humanos , Masculino , Citocinas/metabolismo , Feminino , Adulto , Voluntários Saudáveis , Ativação Plaquetária , Leucócitos , Biomarcadores/sangueRESUMO
OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.
Assuntos
Berberina , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Periodontite , Humanos , Periodontite/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas In Vitro , Ensaio de Imunoadsorção Enzimática , Citometria de FluxoRESUMO
AIM: To study the effect of glycyrrhizin (GA) on the viability and proliferation of dental pulp stem cells (DPSCs) compared with intracanal medicaments. MATERIALS AND METHODS: Third molars of an adult donor were used to obtain the DPSCs. Flow cytometry was utilized to conduct phenotypic analysis for DPSCs. The methyl-thiazol tetrazolium (MTT) test was used to detect the cell viability. Cell proliferation assay was conducted at distinct time intervals: 3, 5, and 7 days. RESULTS: The flow cytometry analysis verified the positive expression of mesenchymal cell surface antigen molecules (CD73, CD90, and CD105) and the absence of hematological markers (CD14, CD34, and CD45) in the DPSCs. The cells that treated with concentrations more than 0.5 mg/mL of Ca(OH2) and triple antibiotic paste (TAP) gave significant decrease in viability in comparison to the untreated cells (p < 0.05). Also, the cells treated with concentrations 50 and 25 µM of GA showed no significant difference compared with the untreated cells (p > 0.05), while concentrations 12.5 and 6.25 µM expressed a significant increase in viability compared with the untreated cells (p < 0.05). At 7 days, cells treated with the three different concentrations of GA (12.5, 25, and 50 µM) demonstrated a significant increase in cell density compared with Ca(OH)2 and TAP-treated cells (p < 0.05). CONCLUSION: Based upon the potential of GA on DPSCs proliferation compared with Ca(OH)2 and TAP, It is conceivable to acknowledge that GA could be used as an intracanal medicaments for revascularization process of necrotic immature teeth. CLINICAL SIGNIFICANCE: This study emphasizes the significance of assessing alternative root canal medicaments and their impact on the proliferation and viability of DPSCs. The results regarding GA, specifically its impact on the viability and growth of DPSCs, provide essential understanding for its potential application as an intracanal medicine. This study adds to the continuous endeavors in identifying safer and more efficient intracanal therapies, which are essential for improving patient outcomes in endodontic operations. How to cite this article: Alrashidi MA, Badawi MF, Elbeltagy MG, et al. The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments. J Contemp Dent Pract 2024;25(3):267-275.
Assuntos
Proliferação de Células , Sobrevivência Celular , Polpa Dentária , Ácido Glicirrízico , Irrigantes do Canal Radicular , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Irrigantes do Canal Radicular/farmacologia , Células-Tronco/efeitos dos fármacos , Citometria de Fluxo , Hidróxido de Cálcio/farmacologia , Células Cultivadas , AdultoRESUMO
The application of spectrally unique, bright, and water-soluble fluorescent dyes is indispensable for the analysis of biological systems. Multiparameter flow cytometry is a powerful tool for characterization of mixed cell populations. To discriminate the different cell populations, they are typically stained by a set of fluorescent reagents, e.g., antibody-fluorophore conjugates. The number of parameters which can be studied simultaneously strongly depends on the availability of reagents which can be differentiated by their spectral properties. In this study a series of fluorescent polymer dyes was developed, that can be excited with a single violet laser (405â nm) but distinguished by their unique emission spectra. The polyfluorene-based polymers can be used on their own, or in combination with covalently bound small-molecule dyes to generate energy transfer constructs to red-shift the emission wavelength based on Förster resonance energy transfer (FRET). The polymer dyes were utilized in a biological flow cytometry assay by conjugating several of them to antibodies, demonstrating their effectiveness as reagents. This report represents the first systematic investigation of structure-property relationships for this type of fluorescent dyes.
Assuntos
Citometria de Fluxo , Corantes Fluorescentes , Polímeros , Solubilidade , Água , Corantes Fluorescentes/química , Polímeros/química , Água/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Estrutura MolecularRESUMO
The flow cytometer has become a powerful and widely accepted measurement device in both biological studies and clinical diagnostics. The application of the flow cytometer in emerging point-of-care scenarios, such as instant detection in remote areas and emergency diagnosis, requires a significant reduction in physical dimension, cost, and power consumption. This requirement promotes studies to develop portable flow cytometers, mostly based on the utilization of polymer microfluidic chips. However, due to the relatively poor optical performance of polymer materials, existing microfluidic flow cytometers are incapable of accurate blood analysis, such as the four-part leukocyte differential count, which is necessary to monitor the immune system and to assess the risk of allergic inflammation or viral infection. To address this issue, an ultraportable flow cytometer based on an all-glass microfluidic chip (AG-UFCM) has been developed in this study. Compared with that of a typical commercial flow cytometer (BD FACSAria III), the volume of the AG-UFCM was reduced by 90 times (from 720 to 8 L). A two-step laser processing was employed to fabricate an all-glass microfluidic chip with a surface roughness of less than 1 nm, significantly improving the optical performance of on-chip micro-lens. The signal-to-noise ratio was enhanced by 3 dB, compared with that of polymer materials. For the first time, a four-part leukocyte differential count based on single fluorescence staining was realized using a miniaturized flow cytometer, laying a foundation for the point-of-care testing of miniaturized flow cytometers.
Assuntos
Lentes , Técnicas Analíticas Microfluídicas , Microfluídica , Citometria de Fluxo/métodos , PolímerosRESUMO
Precise cell detecting and counting is meaningful in circulating tumor cells (CTCs) analysis. In this work, a simple cyclic olefin copolymer (COC) microflow cytometer device was developed for size-resolved CTCs counting. The proposed device is constructed by a counting channel and a pinched injection unit having three channels. Through injection flow rate control, microspheres/cells can be focused into the centerline of the counting channel. Polystyrene microspheres of 3, 9, 15, and 20 µm were used for the microspheres focusing characterization. After coupling to laser-induced fluorescence detection technique, the proposed device was used for polystyrene microspheres counting and sizing. A count accuracy up to 97.6% was obtained for microspheres. Moreover, the proposed microflow cytometer was applied to CTCs detecting and counting. To mimic blood sample containing CTCs and CTCs mixture with different subtypes, an MDA-MB-231 (human breast cell line) spiked red blood cells sample and a mixture of MDA-MB-231 and MCF-7 (human breast cell line) sample were prepared, respectively, and then analyzed by the developed pinched flow-based microfluidic cytometry. The simple fabricated and easy operating COC microflow cytometer exhibits the potential in the point-of-care clinical application.
Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/patologia , Poliestirenos , Citometria de Fluxo , Eritrócitos/patologia , Linhagem Celular Tumoral , Separação Celular/métodosRESUMO
We present here an ionophore-based ion-selective optode (ISO) platform to detect potassium and sodium concentrations in serum through flow cytometry. The ion-selective microsensors were based on polyethylene glycol (PEG)-modified polystyrene (PS) microspheres (PEG-PS). Ratiometric response curves were observed using peak channel fluorescence intensities for K+ (10-6 M to 0.1 M) and Na+ (10-4 M to 0.2 M) with sufficient selectivity for clinical diagnosis. Due to the matrix effect, proteins such as albumin and immunoglobulin caused an obvious increase in response for serum sample determination. To solve this problem, 4-arm PEG chains were covalently attached onto the surface of PS microspheres through a two-step reaction, which improved the stability and combated pollution of microspheres. As a preliminary application, potassium and sodium concentrations in human serums were successfully determined by the PEG-PS microsensors through flow cytometry.
Assuntos
Polietilenoglicóis , Potássio , Humanos , Microesferas , Citometria de Fluxo , Ionóforos , Íons , SódioRESUMO
AIMS: Flow cytometry (FC) is a good way to enumerate the number of viable cells in suspension but is not adapted to mature biofilm analysis. The aim of this study is to investigate the effect of mechanical treatment coupled with enzymatic hydrolysis of biofilm matrix on FC viability analysis of biofilm cells. METHODS AND RESULTS: Biofilm was grown for 300 h of continuous fermentation on polyurethane foams. Fermentation was stopped, and the biofilm was detached by agitating the foams in PBS buffer with vortex agitation for 2 min. The best enzymatic hydrolysis consisted of sequential use of DNase I and proteinase K incubated for 1 h at 34°C. Biofilm cells detached from polyurethane foams were stained with both propidium iodide (PI) and carboxyfluoresceine diacetate and analyzed by FC. FC analysis performed after vortex agitation revealed the presence of high non-fluorescent events (78.9% ± 3.3%). After enzymatic treatment, a cell population was extracted from background noise and could be observed on FSC-SSC profile. The non-fluorescent events of this cell population decreased drastically to 41.9% ± 6.6%, and the percentage of viable cells was enhanced from 2.6% ± 0.9% to 38.2% ± 4.0% compared to analysis performed after mechanical treatment alone. CONCLUSIONS: Consequently, protease and nuclease activity are essential to hydrolyze extra polymeric substances prior to FC viability analysis in mature biofilm formed by Clostridium beijerinckii.
Assuntos
Clostridium beijerinckii , Matriz Extracelular de Substâncias Poliméricas , Poliuretanos , Citometria de Fluxo/métodos , FermentaçãoRESUMO
AIM: To determine the effect of a novel antimicrobial peptide (AMP; OP145) and cell-penetrating peptide (Octa-arginine/R8) conjugate on the killing of intracellular Enterococcus faecalis, compared to OP145 and an antibiotic combination recommended for regenerative endodontic procedures. METHODOLOGY: The biocompatible concentrations of OP145 and OP145-R8 were determined by assessing their cytotoxicity against human macrophages and red blood cells. Spatiotemporal internalization of the peptides into macrophages was investigated qualitatively and quantitatively by confocal laser scanning microscopy and flow cytometry respectively. Killing of extracellular and intracellular E. faecalis OG1RF by the peptides was determined by counting the colony-forming units (CFU). Intracellular antibacterial activity of the peptides was compared to a double antibiotic combination. Confocal microscopy was used to confirm the intracellular bacterial eradication. Significant differences between the different test groups were analysed using one-way analysis of variance. p < .05 was considered to be statistically significant. RESULTS: Peptides at a concentration of 7.5 µmol/L were chosen for subsequent experiments based on the results of the alamarBlue™ cell viability assay and haemolytic assay. OP145-R8 selectively internalized into lysosomal compartments and the cytosol of macrophages. Conjugation with R8 improved the internalization of OP145 into macrophages in a temporal manner (70.53% at 1 h to 77.13% at 2 h), while no temporal increase was observed for OP145 alone (60.53% at 1 h with no increase at 2 h). OP145-R8 demonstrated significantly greater extracellular and intracellular antibacterial activity compared to OP145 at all investigated time-points and concentrations (p < .05). OP145-R8 at 7.5 µmol/L eradicated intracellular E. faecalis after 2 h (3.5 log reduction compared to the control; p < .05), while the antibiotics could not reduce more than 0.5 log CFU compared to the control (p > .05). Confocal microscopy showed complete absence of E. faecalis within the OP145-R8 treated macrophages. CONCLUSIONS: The results of this study demonstrated that the conjugation of an AMP OP145 to a cell-penetrating peptide R8 eradicated extracellular and intracellular E. faecalis OG1RF without toxic effects on the host cells.
Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/farmacologia , Macrófagos/microbiologia , Antibacterianos/farmacologia , Citometria de Fluxo , Enterococcus faecalis , BiofilmesRESUMO
This study aimed to comparatively evaluate the disinfecting potential of sodium hypochlorite, diode laser, and photodynamic therapy in non-vital teeth with or without periapical rarefaction. Forty-five patients with the diagnosis of pulp necrosis with apical rarefaction were randomly assigned to three groups (n = 15) based on the disinfection protocol. Access cavities were prepared and pre-instrumentation microbial samples were taken using a paper point. Working length determination followed by cleaning and shaping with rotary files was performed. The canals were lubricated with ethylenediaminetetraacetic acid (EDTA) during instrumentation and finally rinsed with copious amounts of saline. Canals in group 1 were irrigated with 5 mL of 5.25% NaOCl, those in group 2 received irradiation with 808-nm diode laser (30 s, 7W), and those in group 3 were soaked with methylene blue photosensitizer (5 min) before irradiation with 660-nm diode laser (3 min). Post-disinfection microbial samples were collected using a paper point. Pre- and post-disinfection live bacterial counts were analyzed using a flow cytometer. The data were statistically analyzed using one-way ANOVA and Student's t-test. Comparison of pre-instrumentation mean live bacterial count showed no significant difference between the groups (p > 0.05). The mean live bacterial count post-disinfection was 41.07%, 46.99%, and 34.45% in groups 1-3 respectively. A significant reduction in the bacterial count was seen following disinfection in all the groups (p < 0.05). It can be concluded that both diode laser and photodynamic therapy were equally effective as 5.25% NaOCl in reducing the bioburden in root canals. TRIAL REGISTRATION: CTRI/2018/03/012667.
Assuntos
Fotoquimioterapia , Hipoclorito de Sódio , Humanos , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/uso terapêutico , Citometria de Fluxo , Lasers Semicondutores/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , NecroseRESUMO
OBJECTIVE: To identify, quantify, and characterize leukocyte populations in PI and periodontitis using flow cytometry. METHODS: Fresh biopsies from human PI and periodontitis lesions were processed to a single-cell suspension. The immune cell types were identified using flow cytometry. RESULTS: Twenty-one biopsies were obtained and analyzed corresponding to fourteen PI and seven periodontitis samples. Participants' average age was 63.95 ± 14.77 years without a significant difference between PI and periodontitis patients, the female/male ratio was 8/12, and mean PD was 8.5 ± 2.17. High similarity was found between periodontitis and PI in the main immune cell types. Out of the leukocytes, the PMN proportion was 40% in PI and 33% in periodontitis. T-cells 22% in PI and 18% in periodontitis. Similar proportions of B-cells 10% and macrophages 6% were found in PI and periodontitis. Dendritic and NK cells were found in low proportions (~ 1%) in PI and periodontitis. T-cell sub-analysis showed that CD4-positive were more prevalent than CD8-positive in both diseases (CD4/CD8 ratio of 1.2). CONCLUSION: With the use of flow cytometry analysis, the leukocyte populations in human peri-implantitis and periodontitis were classified. In PI and periodontitis, we identified similar proportions of specific (CD4/CD8) and innate (dendritic and NK) immune cells. These results corroborate previous histological studies. CLINICAL RELEVANCE: Flow cytometry analysis can be used to identify and quantify immune cells in PI and periodontitis, including sub-classification of T cells (CD4/8) as well as detection of cells that require multiple markers for identification (such as dendritic cells).
Assuntos
Implantes Dentários , Peri-Implantite , Periodontite , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Peri-Implantite/metabolismo , Citometria de Fluxo , Periodontite/metabolismo , LeucócitosRESUMO
Poly-hydroxy-butyrate (PHB) bioplastic resin can be made directly from atmospheric CO2 using cyanobacteria. However, higher PHB productivities are required before large-scale production is economically viable. Random mutagenesis offers a way to create new production strains with increased PHB yields and increased biomass densities without complex technical manipulation associated with genetically modified organisms. This study used staining with lipid fluorescent dye (BODIPY 493/593) and fluorescence-activated cell sorting (FACS) to select high lipid content mutants and followed this with a well plate growth screen. Thirteen mutants were selected for flask cultivation and two strains produced significantly higher PHB yields (29% and 26% higher than wild type), biomass accumulation (36% and 33% higher than wild type) and volumetric PHB density (75% and 67% higher than wild type). The maximum PHB yielding strain (% dcw) was 12.0%, which was 43% higher than the wild type (8.3% in this study). The highest volumetric PHB density was 18.8 mg PHB/L compared to 10.7 mg PHB/L by the wild type. To develop cyanobacterial strain with higher PHB productivities, the combination of random chemical mutagenesis and FACS holds great potential to promote cyanobacteria bioplastic production becoming economically viable.