Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.007
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 590(7844): 47-56, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536649

RESUMO

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Assuntos
Biotecnologia/métodos , Biotecnologia/tendências , Celulose/química , Nanoestruturas/química , Desenvolvimento Sustentável/tendências , Materiais Biocompatíveis/química , Géis/química , Humanos , Porosidade
2.
Nano Lett ; 24(8): 2619-2628, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350110

RESUMO

Post-extraction alveolar bone atrophy greatly hinders the subsequent orthodontic tooth movement (OTM) or implant placement. In this study, we synthesized biodegradable bifunctional bioactive calcium phosphorus nanoflowers (NFs) loaded with abaloparatide (ABL), namely ABL@NFs, to achieve spatiotemporal management for alveolar bone regeneration. The NFs exhibited a porous hierarchical structure, high drug encapsulation efficacy, and desirable biocompatibility. ABL was initially released to recruit stem cells, followed by sustained release of Ca2+ and PO43- for in situ interface mineralization, establishing an osteogenic "biomineralized environment". ABL@NFs successfully restored morphologically and functionally active alveolar bone without affecting OTM. In conclusion, the ABL@NFs demonstrated promising outcomes for bone regeneration under orthodontic condition, which might provide a desirable reference of man-made "bone powder" in the hard tissue regeneration field.


Assuntos
Regeneração Óssea , Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Humanos , Osso e Ossos , Porosidade
3.
Nano Lett ; 24(39): 12333-12342, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39302876

RESUMO

Artificial ionic sensory systems, bridging the divide between biological systems and electronics, mimic human skin functions but face critical challenges with biocompatibility, comfort, signal stability, and simplifying packaging. Here, we present a simple and permeable skin-interfaced iontronic mechanosensing (SIIM) architecture that integrates human skin as natural ionic material and hierarchically porous MXene-fiber composite membranes as sensing electrodes. The SIIM system eliminates complex ionic material design and multilayer matrix, exhibiting ultrahigh pressure sensitivities (5.4 kPa-1, <75 Pa), a low detection limit (6 Pa), excellent output stability along with high permeability to minimize the impact of sweating on sensing. The noncytotoxic nature of SIIM electrodes ensures excellent biocompatibility (>97% cell coincubational viability), facilitating long-term wearability and high biosafety. Furthermore, the scalable SIIM configuration integrated with matrix smart gloves, effectively monitors human physical movements. This SIIM-based sensor with marked sensing capabilities, structural simplicity, and scalability, holds promising potential in diverse wearable applications.


Assuntos
Materiais Biocompatíveis , Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Materiais Biocompatíveis/química , Membranas Artificiais , Eletrodos , Permeabilidade , Técnicas Biossensoriais/instrumentação , Porosidade
4.
J Am Chem Soc ; 146(39): 26983-26993, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39294849

RESUMO

While polyphenolic substances stand as excellent antibacterial agents, their antimicrobial properties rely on the auxiliary support of micro-/nanostructures. Despite offering a novel avenue for enhancing polymer performance, controllable fabrication of mesoporous polymeric nanomaterials encounters significant challenges due to intricate intermolecular forces. In this article, mesoporous catechin nanoparticles have been successfully fabricated using a balanced multivariate interaction approach. The harmonization of the water-ethanol ratio and ionic strength effectively balances the forces of hydrogen bonding and π-π stacking, facilitating the controlled assembly of mesostructures. The mesoporous catechin nanoparticles exhibit a uniform spherical structure (∼100 nm), open mesopores with a diameter of ∼15 nm, and a high surface area of ∼106 m2 g-1. While exhibiting a good biocompatibility and negative surface charge, the mesoporous catechins possess outstanding antibacterial ability and function as an antibiotic mesoformulation without the necessity of loading any drugs. This mesoformulation inhibits 50% in vitro Staphylococcus aureus growth with a low concentration of ∼10 µg mL-1 and achieves complete inhibition at ∼25 µg mL-1. In a mouse wound model, accelerated wound healing and complete closure within 6-8 days are achieved. Proteomics of bacteria reveals that the excellent antibacterial property is attributed to the synergetic effect of mesoformulation's mesostructure and the catechin molecule intervening in bacterial metabolism. Overall, this work may pave a novel way for the future exploration of polymer nanomaterials and antibiotic formulations.


Assuntos
Antibacterianos , Catequina , Nanopartículas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Catequina/química , Catequina/farmacologia , Nanopartículas/química , Animais , Camundongos , Porosidade , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Propriedades de Superfície , Tamanho da Partícula , Cicatrização/efeitos dos fármacos
5.
Anal Chem ; 96(17): 6764-6773, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619911

RESUMO

Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.


Assuntos
Separação Celular , Técnicas Analíticas Microfluídicas , Humanos , Separação Celular/instrumentação , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Porosidade , Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Polimetil Metacrilato/química
6.
Anal Chem ; 96(33): 13557-13565, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115161

RESUMO

Although targeted therapy has revolutionized oncotherapy, engineering a versatile oncotherapy nanoplatform integrating both diagnostics and therapeutics has always been an intractable challenge to overcome the limitations of monotherapy. Herein, a theranostics platform based on DI/MP-MB has successfully realized the fluorescence detection of disease marker miR-21 and the gene/photothermal/chemo triple synergetic cancer therapy, which can trace the tumor through photothermal and fluorescence dual-mode imaging and overcome the limitations of monotherapy to improve the treatment efficiency of tumors. DI/MP-MB was prepared by magnetic mesoporous silicon nanoparticles (M-MSNs) loaded with doxorubicin (Dox) and new indocyanine green (IR820), and subsequently coating polydopamine as a "gatekeeper", followed by the surface adsorbed with molecular beacons capable of targeting miR-21 for responsive imaging. Under the action of enhanced permeability retention and external magnetic field, DI/MP-MB were targeted and selectively accumulated in the tumor. MiR-21 MB hybridized with miR-21 to form a double strand, which led to the desorption of miR-21 MB from the polydopamine surface and the fluorescence recovery to realize gene silencing and fluorescence imaging for tracking the treatment process. Meanwhile, with the response to the near-infrared irradiation and the tumor's microacid environment, the outer layer polydopamine will decompose, releasing Dox and IR820 to realize chemotherapy and photothermal therapy. Finally, the ability of DI/MP-MB to efficiently suppress tumor growth was comprehensively assessed and validated both in vitro and in vivo. Noteworthily, the excellent anticancer efficiency by the synergistic effect of gene/photothermal/chemo triple therapy of DI/MP-MB makes it an ideal nanoplatform for tumor therapy and imaging.


Assuntos
Doxorrubicina , Indóis , MicroRNAs , Imagem Multimodal , Polímeros , Silício , Nanomedicina Teranóstica , Indóis/química , Polímeros/química , Silício/química , Humanos , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Camundongos , Porosidade , Verde de Indocianina/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Nanopartículas/química , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Propriedades de Superfície
7.
BMC Biotechnol ; 24(1): 32, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750469

RESUMO

ß-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous ß-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter ß-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm ß-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in ß-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and ß-TCP.


Assuntos
Fosfatos de Cálcio , Cerâmica , Monócitos , Monócitos/citologia , Cerâmica/química , Fosfatos de Cálcio/química , Humanos , Substitutos Ósseos/química , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Porosidade
8.
BMC Biotechnol ; 24(1): 25, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689309

RESUMO

The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.


Assuntos
Cartilagem , Condrócitos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Condrócitos/citologia , Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Coelhos , Porosidade , Ácido Poliglicólico/química , Neovascularização Fisiológica/efeitos dos fármacos
9.
Small ; 20(23): e2310331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183369

RESUMO

The applications of nanoreactors in biology are becoming increasingly significant and prominent. Specifically, nanoreactors with spatially confined, due to their exquisite design that effectively limits the spatial range of biomolecules, attracted widespread attention. The main advantage of this structure is designed to improve reaction selectivity and efficiency by accumulating reactants and catalysts within the chambers, thus increasing the frequency of collisions between reactants. Herein, the recent progress in the synthesis of spatially confined nanoreactors and their biological applications is summarized, covering various kinds of nanoreactors, including porous inorganic materials, porous crystalline materials with organic components and self-assembled polymers to construct nanoreactors. These design principles underscore how precise reaction control could be achieved by adjusting the structure and composition of the nanoreactors to create spatial confined. Furthermore, various applications of spatially confined nanoreactors are demonstrated in the biological fields, such as biocatalysis, molecular detection, drug delivery, and cancer therapy. These applications showcase the potential prospects of spatially confined nanoreactors, offering robust guidance for future research and innovation.


Assuntos
Nanotecnologia , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos , Polímeros/química , Humanos , Porosidade
10.
Small ; 20(31): e2309583, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38446095

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, characterized by aggressiveness and high recurrence rate. As monotherapy provides limited benefit to TNBC patients, combination therapy emerges as a promising treatment approach. Gambogic acid (GA) is an exceedingly promising anticancer agent. Nonetheless, its application potential is hampered by low drug loading efficiency and associated toxic side effects. To overcome these limitations, using mesoporous polydopamine (MPDA) endowed with photothermal conversion capabilities is considered as a delivery vehicle for GA. Meanwhile, GA can inhibit the activity of heat shock protein 90 (HSP90) to enhance the photothermal effect. Herein, GA-loaded MPDA nanoparticles (GA@MPDA NPs) are developed with a high drug loading rate of 75.96% and remarkable photothermal conversion performance. GA@MPDA NPs combined with photothermal treatment (PTT) significantly inhibit the tumor growth, and effectively trigger the immunogenic cell death (ICD), which thereby increase the number of activated effector T cells (CD8+ T cells and CD4+ T cells) in the tumor, and hoist the level of immune-inflammatory cytokines (IFN-γ, IL-6, and TNF-α). The above results suggest that the combination of GA@MPDA NPs with PTT expected to activate the antitumor immune response, thus potentially enhancing the clinical therapeutic effect on TNBC.


Assuntos
Indóis , Polímeros , Neoplasias de Mama Triplo Negativas , Xantonas , Xantonas/química , Xantonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Indóis/química , Indóis/farmacologia , Polímeros/química , Humanos , Animais , Linhagem Celular Tumoral , Feminino , Porosidade , Camundongos , Nanopartículas/química
11.
Small ; 20(37): e2401060, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38726765

RESUMO

3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.05 MJ m-3) and three-point bending (3.82 MJ m-3), respectively. The reinforcement mechanisms are further investigated by experimental and simulation analyses, revealing a multi-scale synergy of fracture and fragmentation resistance through macro and micro-scale fiber bridging, and nano and molecular-scale hydrogel reinforcement. Also, the scaffolds acquire additional antibacterial and drug-loading capabilities from the hydrogel phase while maintaining favorable cell biocompatibility. Therefore, this study demonstrates a facile yet effective approach for preparing brittle-failure-free bioceramic scaffolds with enhanced biological functionalities, showcasing immense potential for BTE applications.


Assuntos
Cerâmica , Hidrogéis , Álcool de Polivinil , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Cerâmica/química , Hidrogéis/química , Álcool de Polivinil/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Teste de Materiais , Porosidade
12.
Small ; 20(30): e2310565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396273

RESUMO

Immunotherapy utilizing anti-PD-L1 blockade has achieved dramatic success in clinical breast cancer management but is often hampered by the limited immune response. Increasing evidence shows that immunogenic cell death (ICD) recently arises as a promising strategy for enlarging tumor immunogenicity and eliciting systemic anti-tumor immunity effectively. However, developing simple but versatile, highly efficient but low-toxic, biosafe, and clinically available transformed ICD inducers remains a huge demand and is highly desirable. Herein, a multifunctional ICD inducer is purposefully developed A6-MPDA@PAL by integrating photothermal therapy (PTT) nanoplatforms mesoporous polydopamine (MPDA), CDK4/6 inhibitor palbociclib (PAL), and CD44-specific targeting A6 peptide in a simple way for augmenting the immune antitumor efficacy of anti-PD-L1 therapy. Remarkably, the light-inducible nanoplatforms exhibit multiple favorable therapeutic features ensuring a superior and biosafe PTT/chemotherapy efficacy. Together with stronger accumulative ICD induction, single administration of A6-MPDA@PAL can trigger robust systemic antitumor immunity and abscopal effect with the assistance of anti-PD-L1 blockade by fascinating the intratumoral infiltration of T lymphocytes and reversing the immunosuppressive tumor microenvironment simultaneously, therapy achieving brilliant synergistic immunotherapy with effective tumor ablation. This study presents a simple and smart ICD inducer opening up attractive clinical possibilities for reinforcing the anti-PD-L1 therapy against breast cancer.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Imunoterapia , Indóis , Polímeros , Indóis/química , Indóis/farmacologia , Polímeros/química , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Imunoterapia/métodos , Feminino , Animais , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Camundongos , Humanos , Linhagem Celular Tumoral , Porosidade , Piridinas/química , Piridinas/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Terapia Fototérmica
13.
J Med Virol ; 96(5): e29655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727091

RESUMO

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Assuntos
Coronavirus Humano 229E , Gases em Plasma , Inativação de Vírus , Humanos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Inativação de Vírus/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular , Porosidade , Desinfecção/métodos , Aço Inoxidável
14.
Biopolymers ; 115(5): e23587, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38752341

RESUMO

Biodegradable elastic poly(L-lactide-co-ε-caprolactone) (PLCL) copolymer (50:50, lactide:caprolactone molar ratio) was synthesized and porous PLCL micropowders was fabricated by a simple method involving rapid cooling of 0.1, 0.5, and 1% (wt/vol) PLCL/dioxane spray into liquid nitrogen. The physicochemical properties of the porous PLCL micropowders were examined by measuring their pore size, pore morphology, and microbead size using a scanning electron microscopy (SEM) and dye and temozolomide (TMZ)-release testing under ultrasound. Human U-87MG, glioblastoma (GBM) cell culture tests were performed to evaluate cell cytotoxicity by released drug from PLCL micropowders. In this study, the porous PLCL micropowders prepared from 1 wt%/vol% PLCL solutions showed a highly porous structure, satisfactory mechanical properties, and optimal drug release efficiency compared with those produced from 0.1 or 0.5 wt%/vol% solutions. The results of the accumulated release test with the results of the absorbance of the dye initially applied, it was confirmed that more than 80% of the added dye was trapped inside the micropowder, and clearly GBM cytotoxicity effect could be observed by the released TMZ. The drug release system using micropowders and ultrasound can be applied as a drug supply system for various diseases such as brain tumors with low drug permeability.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Poliésteres , Humanos , Poliésteres/química , Porosidade , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Temozolomida/química , Temozolomida/farmacologia , Ondas Ultrassônicas , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia
15.
Biopolymers ; 115(4): e23583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661371

RESUMO

Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron. The swelling behavior of the hydrogels, their mechanical properties (Young's moduli) in function of a hydroxyapatite content (5-30 mass%) were studied. All hydrogel samples loaded with hydroxyapatite were found to support growth and proliferation of mouse fibroblasts (L929) at long-term cultivation for 7 days. The obtained macroporous composite Ca-Alg-HA hydrogels could be promising for tissue engineering.


Assuntos
Alginatos , Durapatita , Hidrogéis , Alginatos/química , Hidrogéis/química , Hidrogéis/síntese química , Durapatita/química , Camundongos , Animais , Porosidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Linhagem Celular , Materiais Biocompatíveis/química
16.
Langmuir ; 40(2): 1286-1294, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38171006

RESUMO

Nitric oxide (NO)-releasing coating is promising to enhance the biocompatibility of medical devices. In this study, polyurethane (PU) and S-nitrosated keratin (KSNO) were dissolved with dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) to prepare a coating solution. This solution is facile to form a porous coating on various substrates based on solvent-evaporation-induced phase separation (SEIPS). The coating could continuously release NO up to 200 h in the presence of ascorbic acid (Asc). In addition, the coating could accelerate endothelialization by promoting the viability of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, the coating had good antibacterial activity and blood compatibility. Taken together, this universal coating provides wider potential applications in the field of cardiovascular implants.


Assuntos
Antibacterianos , Óxido Nítrico , Humanos , Óxido Nítrico/farmacologia , Porosidade , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
17.
Langmuir ; 40(37): 19517-19527, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39231009

RESUMO

Colloidal crystal nanomaterials have been proven to be valuable substrates for optical-based biosensing due to their ordered macroporous nanostructure and brilliant optical properties. In this work, silica colloidal crystal (SCC) thin films, as well as polystyrene-SCC composite films and inverse opal (IO) polystyrene films fabricated using SCC as templates, are investigated for their application as substrate materials in optical interferometric biosensors. The SCC films formed by the self-assembly of silica colloidal crystals have the most densely packed nano-3D structure, also known as the opal structure. IO films are fabricated by filling the opal pores of SCC with polystyrene and then removing the template, resulting in an interconnected nano-3D ordered macroporous structure, as indicated by the name inverse opal. The performance of the three materials was compared and discussed based on an ordered porous layer interferometry optical platform, focusing on refractive index response, protein adsorption response, and biomolecular interaction response. These results could potentially offer innovative material support for the advancement of label-free optical biosensors, which can be used for more biological/biochemical/biomolecular reaction monitoring studies.


Assuntos
Técnicas Biossensoriais , Poliestirenos , Poliestirenos/química , Técnicas Biossensoriais/métodos , Dióxido de Silício/química , Nanoestruturas/química , Porosidade , Interferometria/métodos , Adsorção , Coloides/química , Propriedades de Superfície
18.
Biomacromolecules ; 25(2): 829-837, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38173238

RESUMO

The mechanical and architectural properties of the three-dimensional (3D) tissue microenvironment can have large impacts on cellular behavior and phenotype, providing cells with specialized functions dependent on their location. This is especially apparent in macrophage biology where the function of tissue resident macrophages is highly specialized to their location. 3D bioprinting provides a convenient method of fabricating biomaterials that mimic specific tissue architectures. If these printable materials also possess tunable mechanical properties, they would be highly attractive for the study of macrophage behavior in different tissues. Currently, it is difficult to achieve mechanical tunability without sacrificing printability, scaffold porosity, and a loss in cell viability. Here, we have designed composite printable biomaterials composed of traditional hydrogels [nanofibrillar cellulose (cellulose) or methacrylated gelatin (gelMA)] mixed with porous polymeric high internal phase emulsion (polyHIPE) microparticles. By varying the ratio of polyHIPEs to hydrogel, we fabricate composite hydrogels that mimic the mechanical properties of the neural tissue (0.1-0.5 kPa), liver (1 kPa), lungs (5 kPa), and skin (10 kPa) while maintaining good levels of biocompatibility to a macrophage cell line.


Assuntos
Bioimpressão , Alicerces Teciduais , Porosidade , Engenharia Tecidual/métodos , Hidrogéis , Bioimpressão/métodos , Impressão Tridimensional , Materiais Biocompatíveis , Polímeros , Gelatina , Celulose , Técnicas de Cultura de Células em Três Dimensões
19.
Biomacromolecules ; 25(6): 3464-3474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38743442

RESUMO

Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.


Assuntos
Criogéis , Criogéis/química , Porosidade , Peptídeos/química , Hidrogéis/química , Hidrogéis/síntese química , Materiais Biocompatíveis/química , Polimerização , Polímeros/química , Força Compressiva , Matriz Extracelular/química
20.
Biomacromolecules ; 25(9): 5798-5808, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39190621

RESUMO

Microporous annealed particle (MAP) hydrogels are a promising class of in situ-forming scaffolds for tissue repair and regeneration. While an expansive toolkit of annealing chemistries has been described, the effects of different annealing chemistries on MAP hydrogel properties and performance have not been studied. In this study, we address this gap through a controlled head-to-head comparison of poly(ethylene glycol) (PEG)-based MAP hydrogels that were annealed using tetrazine-norbornene and thiol-norbornene click chemistry. Characterization of material properties revealed that tetrazine click annealing significantly increases MAP hydrogel shear storage modulus and results in slower in vitro degradation kinetics when microgels with a higher cross-link density are used. However, these effects are muted when the MAP hydrogels are fabricated from microgels with a lower cross-link density. In contrast, in vivo testing in murine critical-sized calvarial defects revealed that these differences in physicochemical properties do not translate to differences in bone volume or calvarial defect healing when growth-factor-loaded MAP hydrogel scaffolds are implanted into mouse calvarial defects. Nonetheless, the impact of tetrazine click annealing could be important in other applications and should be investigated further.


Assuntos
Química Click , Hidrogéis , Polietilenoglicóis , Hidrogéis/química , Animais , Camundongos , Química Click/métodos , Polietilenoglicóis/química , Porosidade , Alicerces Teciduais/química , Norbornanos/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA