Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.640.152
Filtrar
Más filtros

Intervalo de año de publicación
1.
Rev. Flum. Odontol. (Online) ; 1(66): 1-11, jan-abr.2025. tab, ilus
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1570439

RESUMEN

Introduction: This case report presents the intentional periodontal maintenance of two periodontal hopeless lower central incisors with a multidisciplinary approach and 20-year follow-up. Case presentation: A 36-year-old male, in 2001, was diagnosed with aggressive periodontitis, gingival swelling, bleeding, and mandibular central incisors with mobility and poor prognosis. Following periodontal therapy (phase I), root canal treatment, and occlusal adjustment, #31 and #41 were gently extracted to remove the granulation tissues, calculus, and infected cementum from the root surface. Then, tetracycline-HCl was applied for 5 minutes on the root surfaces. The teeth were repositioned into the sockets and splinted with a lingual bar. At 3 months, the bar was removed, and a free gingival autogenous graft was done to improve the local keratinized tissue width. Mobility scores, pocket depths, and clinical attachment levels were recorded, and radiographs were taken at 1, 5, and 20 years. The 5-year follow-up showed that the teeth were clinically and radiographically in function. There was a reduction in probing depth and a gain in clinical attachment and radiographic alveolar bone levels. After 20 years, #41 was stable, but #31 had external root resorption, leading to a new treatment plan (dental implants) and extraction. Conclusion: The clinical result of this case was satisfactory for 20 years. Intentional periodontal maintenance of the teeth may be an alternative treatment, even considering the high level of complexity.

2.
Rev. Flum. Odontol. (Online) ; 1(66): 12-25, jan-abr.2025. ilus
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1570470

RESUMEN

A hiperplasia hemimandibular é responsável por prejuízos estéticos, funcionais, motores e psicossociais. Com etiologia incerta, ocorre frente ao desequilíbrio de fatores regulatórios de crescimento presentes na camada cartilaginosa do côndilo. O relato objetiva descrever a tomada de decisões baseada em exames complementares específicos aliados à adequada intervenção cirúrgica da lesão. Paciente gênero feminino, 33 anos de idade, compareceu à clínica particular com queixa principal de "face assimétrica", foi requerido uma avaliação cintilográfica objetivando e confirmando a interrupção do crescimento condilar, descartando a hipótese de Osteocondroma e condilectomia. Após preparo ortodôntico prévio, os exames tomográficos foram utilizados na criação de um protótipo que foi impresso após a realização dos movimentos ósseos planejados. Mediante à reconstrução, foi concluído que a assimetria presente não seria totalmente corrigida somente através da intervenção ortognática, sendo necessária também uma osteotomia removendo parte da base do corpo e ângulo mandibular, através da confecção de um guia de corte, promovendo à reanatomização sem a necessidade de acesso extra oral submandibular, evitando uma cicatriz em face feminina. Paciente encontra-se em pós-operatório de 60 meses, sem queixas e satisfeita. Portanto, é evidenciado cada vez mais a influência positiva que o planejamento virtual pode trazer aos profissionais na otimização dos resultados cirúrgicos.


Hemimandibular hyperplasia is responsible for aesthetic, functional, motor, and psychosocial impairments. With an uncertain etiology, it occurs due to the imbalance of regulatory growth factors present in the cartilaginous layer of the condyle. The report aims to describe decision-making based on specific complementary exams combined with the appropriate surgical intervention for the condition. A 33-year-old female patient presented at a private clinic with the main complaint of "asymmetric face." A scintigraphic evaluation was requested to objectively confirm the interruption of condylar growth, ruling out the hypothesis of Osteochondroma and condylectomy. After prior orthodontic preparation, tomographic exams were used to create a prototype that was printed after planned bone movements. Through the reconstruction, it was concluded that the existing asymmetry would not be entirely corrected through orthognathic intervention alone, necessitating also an osteotomy to remove part of the base of the body and mandibular angle. This was done through the creation of a cutting guide, allowing for reanatomization without the need for submandibular extraoral access, thus avoiding a scar on the female face. The patient is 60 months postoperative, with no complaints and satisfied. Therefore, the increasingly positive influence of virtual planning on optimizing surgical outcomes for professionals is evident.

3.
Rev. Flum. Odontol. (Online) ; 1(66): 26-39, jan-abr.2025. graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1570471

RESUMEN

Na odontologia a decisão do tratamento é exclusiva dos cirurgiões dentistas e suas percepções, incluindo filosofia de tratamento, fazendo com que a prática de novos conceitos, tratamentos ou técnicas dependam não apenas de sua lógica ou eficácia biológica. Sendo assim, este estudo teve como objetivo avaliar os parâmetros envolvidos na tomada de decisão de cirurgiões dentistas clínicos e especialistas para a realização do tratamento endodôntico em sessão única ou múltiplas sessões. Para tanto, este estudo contou com uma coleta de dados através de um questionário online, aplicado cirurgiões dentistas clínicos gerais e especialistas em endodontia. As respostas foram tabuladas e analisadas por meio de estatística descritiva. Os resultados revelaram que a maioria dos endodontistas e dos clínicos gerais prefere realizar tratamento endodôntico em sessão única, devido ao menor desperdício de material, além do melhor domínio da anatomia e tratamento em um único momento. O motivo mais comum para os endodontistas e clínicos gerais escolherem o tratamento com múltiplas visitas é para dentes com prognóstico duvidoso e os casos em que o profissional aguarda a remissão dos sintomas antes da obturação. Em conclusão, a maioria dos endodontistas e dos clínicos gerais preferiu realizar tratamento endodôntico em sessão única.


In dentistry, treatment decisions are made exclusively by dental surgeons and their perceptions, including treatment philosophy, which means that the practice of new concepts, treatments or techniques depends not only on their logic or biological efficacy. Therefore, the aim of this study was to evaluate the parameters involved in clinical and specialist dental surgeons' decision to carry out endodontic treatment in single or multiple sessions. To this end, data was collected using an online questionnaire administered to general dental surgeons and endodontic specialists. The answers were tabulated and analyzed using descriptive statistics. The results revealed that the majority of endodontists and general practitioners prefer to carry out endodontic treatment in a single session, due to less wastage of material, as well as better mastery of the anatomy and treatment at a single time. The most common reason for endodontists and general practitioners to choose treatment with multiple visits is for teeth with a doubtful prognosis and cases in which the professional is waiting for symptoms to remit before filling. In conclusion, the majority of endodontists and general practitioners preferred to carry out endodontic treatment in a single session.

4.
Methods Mol Biol ; 2848: 259-267, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240528

RESUMEN

Controlled release or controlled drug delivery comprises the set of techniques and approaches to improve bioavailability through improved safety and/or efficacy using a carrier material for the molecule of interest. The predictability and tunability of these carriers make them ideal for protection, localization, and sustained presentation of a wide range of therapeutics, including growth factors implicated in cell survival and regeneration. Here we provide a method for encapsulating epidermal growth factor in a degradable polymer matrix for delivery to the cornea. Additional notes are included to demonstrate the wide-ranging capabilities of such methods for other materials, therapeutic agents, and sites of action within the eye.


Asunto(s)
Supervivencia Celular , Preparaciones de Acción Retardada , Supervivencia Celular/efectos de los fármacos , Humanos , Regeneración , Factor de Crecimiento Epidérmico/metabolismo , Animales , Córnea/metabolismo , Córnea/citología , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Portadores de Fármacos/química
5.
Biomaterials ; 312: 122739, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39096840

RESUMEN

The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.


Asunto(s)
Biopelículas , Indoles , Proteínas de la Membrana , Polímeros , Biopelículas/efectos de los fármacos , Polímeros/química , Animales , Indoles/química , Indoles/farmacología , Ratones , Proteínas de la Membrana/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Porosidad , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Femenino , Transducción de Señal/efectos de los fármacos , Terapia Fototérmica , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Ratones Endogámicos C57BL
6.
Biomaterials ; 312: 122733, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106819

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Resistencia a Antineoplásicos , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ligando Inductor de Apoptosis Relacionado con TNF , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
7.
Biomaterials ; 312: 122741, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121727

RESUMEN

Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.


Asunto(s)
Fascia Lata , Antígenos HLA , Ingeniería de Tejidos , Humanos , Animales , Ingeniería de Tejidos/métodos , Antígenos HLA/inmunología , Ratas , Andamios del Tejido/química , Materiales Biocompatibles/química , Masculino , Matriz Extracelular Descelularizada/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo
8.
Neural Regen Res ; 20(7): 1930-1943, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38993126

RESUMEN

The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.

9.
Biomaterials ; 312: 122724, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106818

RESUMEN

The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.


Asunto(s)
Neoplasias Óseas , Regeneración Ósea , Calcio , Ácido Gálico , Células Madre Mesenquimatosas , Ácido Gálico/química , Regeneración Ósea/efectos de los fármacos , Animales , Calcio/metabolismo , Neoplasias Óseas/terapia , Neoplasias Óseas/tratamiento farmacológico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Terapia Fototérmica/métodos , Osteogénesis/efectos de los fármacos , Ratones , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular Tumoral
10.
Biomaterials ; 312: 122742, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106821

RESUMEN

Hypertrophic scar (HS) tends to raised above skin level with high inflammatory microenvironment and excessive proliferation of myofibroblasts. The HS therapy remains challenging due to dense scar tissue which makes it hard to penetrate, and the side effects resulting from intralesional corticosteroid injection which is the mainstay treatment in clinic. Herein, bilayer microneedle patches combined with dexamethasone and colchicine (DC-MNs) with differential dual-release pattern is designed. Two drugs loaded in commercially available materials HA and PLGA, respectively. Specifically, after administration, outer layer rapidly releases the anti-inflammatory drug dexamethasone, which inhibits macrophage polarization to pro-inflammatory phenotype in scar tissue. Subsequently, inner layer degrades sustainedly, releasing antimicrotubular agent colchicine, which suppresses the overproliferation of myofibroblasts with extremely narrow therapeutic window, and inhibits the overexpression of collagen, as well as promotes the regular arrangement of collagen. Only applied once, DC-MNs directly delivered drugs to the scar tissue. Compared to traditional treatment regimen, DC-MNs significantly suppressed HS at lower dosage and frequency by differential dual-release design. Therefore, this study put forward the idea of integrated DC-MNs accompany the development of HS, providing a non-invasive, self-applicable, more efficient and secure strategy for treatment of HS.


Asunto(s)
Antiinflamatorios , Cicatriz Hipertrófica , Colchicina , Dexametasona , Miofibroblastos , Agujas , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/patología , Animales , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Dexametasona/farmacología , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Antiinflamatorios/uso terapéutico , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Colchicina/farmacología , Colchicina/administración & dosificación , Ratones , Sistemas de Liberación de Medicamentos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
11.
Biomaterials ; 312: 122747, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39142219

RESUMEN

Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.


Asunto(s)
Colitis Ulcerosa , Liposomas , Compuestos de Sulfhidrilo , Colitis Ulcerosa/tratamiento farmacológico , Liposomas/química , Animales , Compuestos de Sulfhidrilo/química , Humanos , Nanopartículas/química , Ratones , Colon/patología , Colon/efectos de los fármacos , Colon/metabolismo , Masculino , Sistemas de Liberación de Medicamentos
12.
Biomaterials ; 312: 122760, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39163825

RESUMEN

Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.


Asunto(s)
Artritis Reumatoide , Desoxiglucosa , Dexametasona , Glucosa , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Animales , Glucosa/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Ratones , Desoxiglucosa/farmacología , Inflamación/tratamiento farmacológico , Glucólisis/efectos de los fármacos , Polímeros/química , Ácido Hialurónico/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Humanos , Proliferación Celular/efectos de los fármacos
14.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181639

RESUMEN

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradación Ambiental , Simulación de Dinámica Molecular , Hidrólisis , Modelos Químicos
15.
Biomaterials ; 313: 122763, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39180917

RESUMEN

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Asunto(s)
Cobre , Nanomedicina , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Animales , Femenino , Nanomedicina/métodos , Cobre/química , Cobre/farmacología , Línea Celular Tumoral , Ratones , Nanopartículas/química , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indoles/farmacología
16.
Biomaterials ; 313: 122756, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39182327

RESUMEN

Currently, the treatment of bone defects in arthroplasty is a challenge in clinical practice. Nonetheless, commercially available orthopaedic scaffolds have shown limited therapeutic effects for large bone defects, especially for massiveand irregular defects. Additively manufactured porous tantalum, in particular, has emerged as a promising material for such scaffolds and is widely used in orthopaedics for its exceptional biocompatibility, osteoinduction, and mechanical properties. Porous tantalum has also exhibited unique advantages in personalised rapid manufacturing, which allows for the creation of customised scaffolds with complex geometric shapes for clinical applications at a low cost and high efficiency. However, studies on the effect of the pore structure of additively manufactured porous tantalum on bone regeneration have been rare. In this study, our group designed and fabricated a batch of precision porous tantalum scaffolds via laser powder bed fusion (LPBF) with pore sizes of 250 µm (Ta 250), 450 µm (Ta 450), 650 µm (Ta 650), and 850 µm (Ta 850). We then performed a series of in vitro experiments and observed that all four groups showed good biocompatibility. In particular, Ta 450 demonstrated the best osteogenic performance. Afterwards, our team used a rat bone defect model to determine the in vivo osteogenic effects. Based on micro-computed tomography and histology, we identified that Ta 450 exhibited the best bone ingrowth performance. Subsequently, sheep femur and hip defect models were used to further confirm the osteogenic effects of Ta 450 scaffolds. Finally, we verified the aforementioned in vitro and in vivo results via clinical application (seven patients waiting for revision total hip arthroplasty) of the Ta 450 scaffold. The clinical results confirmed that Ta 450 had satisfactory clinical outcomes up to the 12-month follow-up. In summary, our findings indicate that 450 µm is the suitable pore size for porous tantalum scaffolds. This study may provide a new therapeutic strategy for the treatment of massive, irreparable, and protracted bone defects in arthroplasty.


Asunto(s)
Regeneración Ósea , Tantalio , Andamios del Tejido , Tantalio/química , Regeneración Ósea/efectos de los fármacos , Porosidad , Animales , Andamios del Tejido/química , Ratas , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Humanos , Masculino , Prueba de Estudio Conceptual , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Femenino
17.
Biomaterials ; 313: 122771, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190940

RESUMEN

The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.


Asunto(s)
Fluorocarburos , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Microambiente Tumoral , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Animales , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Fluorocarburos/química , Fluorocarburos/farmacología , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Humanos , Ratones , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones Endogámicos BALB C , Terapia Fototérmica/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fototerapia/métodos , Femenino
18.
Biomaterials ; 313: 122769, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39208698

RESUMEN

Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.


Asunto(s)
Materiales Biocompatibles Revestidos , Matriz Extracelular , Cicatrización de Heridas , Animales , Matriz Extracelular/metabolismo , Perros , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Colágeno Tipo I/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Repitelización/efectos de los fármacos , Adhesión Celular/efectos de los fármacos
19.
Biomaterials ; 313: 122778, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39213978

RESUMEN

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Asunto(s)
Clorofilidas , Indoles , Platino (Metal) , Polímeros , Porfirinas , Neoplasias de la Tiroides , Microambiente Tumoral , Terapia por Ultrasonido , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/metabolismo , Humanos , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Indoles/química , Terapia por Ultrasonido/métodos , Porfirinas/química , Porfirinas/farmacología , Polímeros/química , Animales , Platino (Metal)/química , Platino (Metal)/uso terapéutico , Platino (Metal)/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Apoptosis/efectos de los fármacos , Nanopartículas/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones , Quinolinas/farmacología , Quinolinas/química , Ratones Desnudos , Portadores de Fármacos/química
20.
Biomaterials ; 313: 122753, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39217793

RESUMEN

Non-viral nanoparticles (NPs) have seen heightened interest as a delivery method for a variety of clinically relevant nucleic acid cargoes in recent years. While much of the focus has been on lipid NPs, non-lipid NPs, including polymeric NPs, have the possibility of improved efficacy, safety, and targeting, especially to non-liver organs following systemic administration. A safe and effective systemic approach for intracellular delivery to the lungs could overcome limitations to intratracheal/intranasal delivery of NPs and improve clinical benefit for a range of diseases including cystic fibrosis. Here, engineered biodegradable poly (beta-amino ester) (PBAE) NPs are shown to facilitate efficient delivery of mRNA to primary human airway epithelial cells from both healthy donors and individuals with cystic fibrosis. Optimized NP formulations made with differentially endcapped PBAEs and systemically administered in vivo lead to high expression of mRNA within the lungs in BALB/c and C57 B/L mice without requiring a complex targeting ligand. High levels of mRNA-based gene editing were achieved in an Ai9 mouse model across bronchial, epithelial, and endothelial cell populations. No toxicity was observed either acutely or over time, including after multiple systemic administrations of the NPs. The non-lipid biodegradable PBAE NPs demonstrate high levels of transfection in both primary human airway epithelial cells and in vivo editing of lung cell types that are targets for numerous life-limiting diseases particularly single gene disorders such as cystic fibrosis and surfactant deficiencies.


Asunto(s)
Pulmón , Ratones Endogámicos C57BL , Nanopartículas , Polímeros , ARN Mensajero , Animales , Pulmón/metabolismo , Humanos , Nanopartículas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polímeros/química , Ratones Endogámicos BALB C , Ratones , Fibrosis Quística , Femenino , Ligandos , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA