Your browser doesn't support javascript.
loading
A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J.
Afiliación
  • Lin CY; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
J Biomech ; 37(5): 623-36, 2004 May.
Article en En | MEDLINE | ID: mdl-15046991
ABSTRACT
An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.
Asunto(s)
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Diseño Asistido por Computadora / Ingeniería de Tejidos / Materiales Biomiméticos / Mandíbula / Modelos Biológicos / Modelos Químicos Tipo de estudio: Evaluation_studies Límite: Animals / Humans Idioma: En Revista: J Biomech Año: 2004 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Diseño Asistido por Computadora / Ingeniería de Tejidos / Materiales Biomiméticos / Mandíbula / Modelos Biológicos / Modelos Químicos Tipo de estudio: Evaluation_studies Límite: Animals / Humans Idioma: En Revista: J Biomech Año: 2004 Tipo del documento: Article País de afiliación: Estados Unidos