Your browser doesn't support javascript.
loading
MXene-Based Flexible Electrodes for Electrophysiological Monitoring.
Alex, Meera; Khan, Kashif Rast Baz; Al-Othman, Amani; Al-Sayah, Mohammad H; Al Nashash, Hasan.
Afiliación
  • Alex M; Biosciences and Bioengineering Graduate Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.
  • Khan KRB; Biosciences and Bioengineering Graduate Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.
  • Al-Othman A; Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.
  • Al-Sayah MH; Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.
  • Al Nashash H; Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.
Sensors (Basel) ; 24(11)2024 May 21.
Article en En | MEDLINE | ID: mdl-38894053
ABSTRACT
The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Electrodos / Dispositivos Electrónicos Vestibles Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Emiratos Árabes Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Electrodos / Dispositivos Electrónicos Vestibles Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Emiratos Árabes Unidos