Your browser doesn't support javascript.
A Biblioteca Cochrane foi excluída da BVS por decisão da Wiley de não renovação da licença de uso com a BIREME. Saiba mais.

BVS Odontologia

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Biophysical and biochemical properties of a binary lipid mixture for DNA transfection.

Mirska, D; Schirmer, K; Funari, S S; Langner, A; Dobner, B; Brezesinski, G.
Colloids Surf B Biointerfaces; 40(1): 51-9, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15620840
The phase and miscibility behavior of a triple-chain phosphatidylcholine (TPHPC) and a single-chain surfactant (CTAB) were investigated in aqueous dispersions and in monolayers at the air/water interface. CTAB can be incorporated in the TPHPC monolayer because of its complementary molecule shape and reduces the tilt angle of TPHPC. The type of phases and the phase sequence (L2 - LS) are the same in the pure TPHPC monolayer and in the TPHPC/CTAB (8020 molmol) mixture. No indication of any ordering of adsorbed DNA was observed. In the aqueous dispersions, TPHPC exhibits an inverted hexagonal phase above the chain melting. The addition of 30 mol% CTAB leads to the appearance of a lamellar Lalpha phase. The binding of DNA to the mixture is obvious but this is accompanied by a separation of the two lipids what is supported by monolayer experiments. The system has no long-term stability. The main reason seems to be not only the stronger interaction of DNA with CTAB, but also especially the unexpected weak interaction between CTAB and TPHPC. The transfection efficiency is lower compared with lipofectamine. The main disadvantage of this system is the cytotoxicity of CTAB, which could not be lowered by incorporation of CTAB in the TPHPC bilayer.