Your browser doesn't support javascript.
loading
Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents.
Shieh, Dar-Bin; Cheng, Fong-Yu; Su, Chia-Hao; Yeh, Chen-Sheng; Wu, Ming-Ting; Wu, Ya-Na; Tsai, Chiau-Yuang; Wu, Chao-Liang; Chen, Dong-Hwang; Chou, Chen-Hsi.
Afiliação
  • Shieh DB; Department of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan. dshieh@mail.ncku.edu.tw
Biomaterials ; 26(34): 7183-91, 2005 Dec.
Article em En | MEDLINE | ID: mdl-15964622
ABSTRACT
In the current study, amine surface modified iron-oxide nanoparticles of 6 nm diameter without polymer coating were fabricated in an aqueous solution by organic acid modification as an adherent following chemical coprecipitation. Structure and the superparamagnetic property of magnetite nanoparticles were characterized by selected area electron diffraction (SAED) and superconducting quantum interference measurement device (SQUID). X-ray photoelectron spectrometer (XPS) and zeta potential measurements revealed cationic surface mostly decorated with terminal -NH(3)(+). This feature enables them to function as a magnetic carrier for nucleotides via electrostatic interaction. In addition, Fe(3)O(4)/trypsin conjugates with well-preserved functional activity was demonstrated. The nanoparticles displayed excellent in vitro biocompatibility. The NMR and the in vitro MRI measurements showed significantly reduced water proton relaxation times of both T(1) and T(2). Significantly reduced T(2) and T(2)*-weighted signal intensity were observed in a 1.5 T clinical MR imager. In vivo imaging contrast effect showed a fast and prolonged inverse contrast effect in the liver that lasted for more than 1 week. In addition, it was found that the spherical Fe(3)O(4) assembled as rod-like configuration through an aging process in aqueous solution at room temperature. Interestingly, TEM observation of the liver tissue revealed the rod-like shape but not the spherical-type nanoparticles being taken up by the Kupffer cells 120 h after tail vein infusion. Combining these results, we have demonstrated the potential applications of the newly synthesized magnetite nanoparticles in a broad spectrum of biomedical applications.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Separação Imunomagnética / Meios de Contraste / Nanotubos / Compostos de Amônio Quaternário / Micromanipulação Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Revista: Biomaterials Ano de publicação: 2005 Tipo de documento: Article País de afiliação: Taiwan
Buscar no Google
Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Separação Imunomagnética / Meios de Contraste / Nanotubos / Compostos de Amônio Quaternário / Micromanipulação Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Revista: Biomaterials Ano de publicação: 2005 Tipo de documento: Article País de afiliação: Taiwan