Your browser doesn't support javascript.
loading
The future prospects of microbial cellulose in biomedical applications.
Czaja, Wojciech K; Young, David J; Kawecki, Marek; Brown, R Malcolm.
Afiliação
  • Czaja WK; Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78713, USA.
Biomacromolecules ; 8(1): 1-12, 2007 Jan.
Article em En | MEDLINE | ID: mdl-17206781
ABSTRACT
Microbial cellulose has proven to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, such as paper products, electronics, acoustics, and biomedical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. For example, a microbial cellulose membrane has been successfully used as a wound-healing device for severely damaged skin and as a small-diameter blood vessel replacement. The nonwoven ribbons of microbial cellulose microfibrils closely resemble the structure of native extracellular matrices, suggesting that it could function as a scaffold for the production of many tissue-engineered constructs. In addition, microbial cellulose membranes, having a unique nanostructure, could have many other uses in wound healing and regenerative medicine, such as guided tissue regeneration (GTR), periodontal treatments, or as a replacement for dura mater (a membrane that surrounds brain tissue). In effect, microbial cellulose could function as a scaffold material for the regeneration of a wide variety of tissues, showing that it could eventually become an excellent platform technology for medicine. If microbial cellulose can be successfully mass produced, it will eventually become a vital biomaterial and will be used in the creation of a wide variety of medical devices and consumer products.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Celulose / Substâncias Macromoleculares Limite: Animals / Humans Idioma: En Revista: Biomacromolecules Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2007 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Celulose / Substâncias Macromoleculares Limite: Animals / Humans Idioma: En Revista: Biomacromolecules Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2007 Tipo de documento: Article País de afiliação: Estados Unidos