Your browser doesn't support javascript.
A Biblioteca Cochrane foi excluída da BVS por decisão da Wiley de não renovação da licença de uso com a BIREME. Saiba mais.

BVS Odontologia

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

pH dependent poly[2-(methacryloyloxyethyl)trimetylammonium chloride-co-methacrylic acid]hydrogels for enhanced targeted delivery of 5-fluorouracil in colon cancer cells.

Mishra, R K; Ramasamy, K; Ahmad, N A; Eshak, Z; Majeed, A B A.
J Mater Sci Mater Med; 25(4): 999-1012, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24398912
Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 µg ml(-1)) and HCT116 (IC50 = 210-390 µg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 µg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.