Your browser doesn't support javascript.
A Biblioteca Cochrane foi excluída da BVS por decisão da Wiley de não renovação da licença de uso com a BIREME. Saiba mais.

BVS Odontologia

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

A wireless power transmission system for implantable devices in freely moving rodents.

Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June.
Med Biol Eng Comput; 52(8): 639-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24946939
Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.