Your browser doesn't support javascript.
A Biblioteca Cochrane foi excluída da BVS por decisão da Wiley de não renovação da licença de uso com a BIREME. Saiba mais.

BVS Odontologia

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Evaluation of the Antibacterial Potential of Liquid and Vapor Phase Phenolic Essential Oil Compounds against Oral Microorganisms.

Wang, Tong-Hong; Hsia, Shih-Min; Wu, Chi-Hao; Ko, Shun-Yao; Chen, Michael Yuanchien; Shih, Yin-Hua; Shieh, Tzong-Ming; Chuang, Li-Chuan; Wu, Ching-Yi.
PLoS One; 11(9): e0163147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27681039
The aim of the present study was to determine the antibacterial activities of the phenolic essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral pathogens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from the strongest to weakest, were hinokitiol (40-60 µg/mL/40-100 µg/mL), thymol (100-200 µg/mL/200-400 µg/mL), carvacrol (200-400 µg/mL/200-600 µg/mL), and menthol (500-more than 2500 µg/mL/1000-more than 2500 µg/mL). The antibacterial activities of the four EO phenolic compound based on the agar diffusion test and bacterial growth curves showed that the four EO phenolic compounds were stable under different temperatures for 24 h, but the thymol activity decreased when the temperature was higher than 80°C. The combination of liquid carvacrol with thymol did not show any synergistic effects. The activities of the vaporous carvacrol and thymol were inhibited by the presence of water. Continual violent shaking during culture enhanced the activity of menthol. Both liquid and vaporous hinokitiol were stable at different temperatures and pH conditions. The combination of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities. Hinokitiol has the potential to be applied in oral health care products, dental materials, and infection controls to exert antimicrobial activity.