Your browser doesn't support javascript.
A Biblioteca Cochrane foi excluída da BVS por decisão da Wiley de não renovação da licença de uso com a BIREME. Saiba mais.

BVS Odontologia

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Email
Adicionar mais destinatários
| |

Load-Bearing Capacity of Posterior CAD/CAM Implant-Supported Fixed Partial Dentures Fabricated with Different Esthetic Materials.

Amelya, Ami; Kim, Jong-Eun; Woo, Chang-Woo; Otgonbold, Jamiyandorj; Lee, Keun-Woo.
Int J Prosthodont; 32(2): 201-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856647

PURPOSE:

To compare the load-bearing capacity after long-term use (5-year simulation) of posterior three-unit implant-supported fixed partial dentures (FPDs) fabricated with different esthetic materials.

MATERIALS AND METHODS:

A total of 20 specimens fabricated from one design file using CAD/CAM were divided into four groups: polyetherketoneketone (PEKK) veneered with composite resin (CR); PEKK veneered with lithium disilicate (LD); zirconia veneered with fluorapatite (FA); and monolithic zirconia. Samples were placed into a chewing simulator with simultaneous thermocycling. The fracture load after aging was measured using the universal testing machine with load on the central fossa of the pontic.

RESULTS:

FPDs fabricated with PEKK + LD had significantly higher fracture load (1,526.56 [SD 95.54] N) compared to PEKK + CR (1,069.54 [SD 67.94] N) (P < .05). FPDs fabricated with zirconia materials had significantly higher fracture load compared to PEKK materials (P < .05). There was no significant difference between monolithic zirconia and zirconia + FA (P > .05).

CONCLUSION:

FPDs fabricated with PEKK + LD were superior to PEKK + CR. These materials can be promising alternatives for use as implant-supported FPD materials in the high-stress-bearing posterior region. Zirconia + FA can be an alternative to monolithic zirconia in cases that require more esthetics.