Your browser doesn't support javascript.
loading
Acid-triggered, degradable and high strength-toughness copolyesters: Comprehensive experimental and theoretical study.
Tian, Ying; Li, Jiayi; Hu, Han; Chen, Chao; Li, Fenglong; Ying, Wu Bin; Zheng, Linjie; Zhao, Yi-Lei; Wang, Jinggang; Zhang, Ruoyu; Zhu, Jin.
Afiliação
  • Tian Y; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, Peop
  • Li J; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
  • Hu H; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China. Electronic address: huhan@nimte.ac.cn.
  • Chen C; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, Peop
  • Li F; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, Peop
  • Ying WB; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China.
  • Zheng L; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
  • Zhao YL; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Chemistry and Biochemistry, Universi
  • Wang J; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China.
  • Zhang R; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China.
  • Zhu J; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China. Electronic address: jzhu@nimte.ac.cn.
J Hazard Mater ; 430: 128392, 2022 05 15.
Article em En | MEDLINE | ID: mdl-35152100
The popularization and widespread use of degradable polymers is hindered by their poor mechanical properties. It is of great importance to find a balance between degradation and mechanical properties. Herein, poly(butylene terephthalate) (PBT) modified by SPG diol from 10% to 40 mol% were synthesized through a two-step polycondensation reaction. Chemical structures, thermal properties, mechanical properties, viscoelastic behavior and degradation of poly(butylene terephthalate-co-spirocyclic terephthalate) (PBST) were investigated. The SPG could toughen the copolyesters and the elongation at break of PBST20 was up to 260%. Moreover, the introduction of SPG enables to provide an acid-triggered degradable unit in the main chain. PBSTs copolymers maintain stable structures in a neutral environment, and the degradation under acid conditions will be unlocked. As tailoring the content of SPG, the degradation rate of the chain scission in response to acid stimuli will be adjusted. The acid degradation was proved to be occurred at the SPG units in the amorphous phase by DSC, XRD, GPC and 1H NMR tests. After the acid degradation, the hydrolysis rate will also be accelerated, adapting to the requirements of different degradation schedules. The plausible hydrolytic pathways and mechanisms were proposed based on Fukui function analysis and density functional theory (DFT) calculation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poliésteres / Materiais Biocompatíveis Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poliésteres / Materiais Biocompatíveis Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article