Your browser doesn't support javascript.
loading
Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs.
Sheng, Chen; Wang, Lin; Huang, Zhenhuan; Wang, Tian; Guo, Yalin; Hou, Wenjie; Xu, Laiqing; Wang, Jiazhu; Yan, Xue.
Afiliação
  • Sheng C; Medical School of Chinese PLA, Beijing, 100853 China.
  • Wang L; Department of Stomatology, the first Medical Centre, Chinese PLA General Hospital, Beijing, 100853 China.
  • Huang Z; Medical School of Chinese PLA, Beijing, 100853 China.
  • Wang T; Department of Stomatology, the first Medical Centre, Chinese PLA General Hospital, Beijing, 100853 China.
  • Guo Y; Beihang University, Beijing, 100191 China.
  • Hou W; Medical School of Chinese PLA, Beijing, 100853 China.
  • Xu L; Department of Stomatology, the first Medical Centre, Chinese PLA General Hospital, Beijing, 100853 China.
  • Wang J; Beihang University, Beijing, 100191 China.
  • Yan X; Medical School of Chinese PLA, Beijing, 100853 China.
J Syst Sci Complex ; : 1-16, 2022 Oct 14.
Article em En | MEDLINE | ID: mdl-36258771
Panoramic radiographs can assist dentist to quickly evaluate patients' overall oral health status. The accurate detection and localization of tooth tissue on panoramic radiographs is the first step to identify pathology, and also plays a key role in an automatic diagnosis system. However, the evaluation of panoramic radiographs depends on the clinical experience and knowledge of dentist, while the interpretation of panoramic radiographs might lead misdiagnosis. Therefore, it is of great significance to use artificial intelligence to segment teeth on panoramic radiographs. In this study, SWin-Unet, the transformer-based Ushaped encoder-decoder architecture with skip-connections, is introduced to perform panoramic radiograph segmentation. To well evaluate the tooth segmentation performance of SWin-Unet, the PLAGH-BH dataset is introduced for the research purpose. The performance is evaluated by F1 score, mean intersection and Union (IoU) and Acc, Compared with U-Net, Link-Net and FPN baselines, SWin-Unet performs much better in PLAGH-BH tooth segmentation dataset. These results indicate that SWin-Unet is more feasible on panoramic radiograph segmentation, and is valuable for the potential clinical application.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Syst Sci Complex Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Syst Sci Complex Ano de publicação: 2022 Tipo de documento: Article