Your browser doesn't support javascript.
loading
Injectable TG-linked recombinant human collagen hydrogel loaded with bFGF for rat cranial defect repair.
Guo, Yayuan; Hu, Zeyu; Chen, Jilong; Zhang, Zhen; Liu, Qian; Li, Juan; Yang, Jiaojiao; Ma, Zihan; Zhao, Jing; Hu, Jingyan; Wu, Jiawei; Chen, Zhuoyue.
Afiliação
  • Guo Y; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Hu Z; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Chen J; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Zhang Z; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
  • Liu Q; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Li J; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Yang J; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Ma Z; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Zhao J; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Hu J; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Wu J; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
  • Chen Z; Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
Int J Biol Macromol ; 236: 123864, 2023 May 01.
Article em En | MEDLINE | ID: mdl-36871688
ABSTRACT
The basic fibroblast growth factor (bFGF) plays a significant role in promoting the process of bone repair, but bFGF cannot keep its biological activity stable under normal physiological conditions. Therefore, the development of better biomaterials to carry bFGF remains a challenge for bone repair and regeneration. Here we designed a novel recombinant human collagen (rhCol), which could be cross-linked by transglutaminase (TG) and loaded bFGF to prepare rhCol/bFGF hydrogels. The rhCol hydrogel possessed a porous structure and good mechanical properties. The assays, including cell proliferation, migration, and adhesion assay, were performed to evaluate the biocompatibility of rhCol/bFGF and the results demonstrated that the rhCol/bFGF promoted cell proliferation, migration and adhesion. The rhCol/bFGF hydrogel degraded and released bFGF controllably, enhancing utilization rate of bFGF and allowing osteoinductive activity. The results of RT-qPCR and immunofluorescence staining also proved that rhCol/bFGF promoted expression of bone-related proteins. The rhCol/bFGF hydrogels were applied in the cranial defect in rats and the results confirmed that it accelerates bone defect repair. In conclusion, rhCol/bFGF hydrogel has excellent biomechanical properties and can continuously release bFGF to promote bone regeneration, suggesting that rhCol/bFGF hydrogel is a potential scaffold in clinic application.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transglutaminases / Hidrogéis Limite: Animals / Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transglutaminases / Hidrogéis Limite: Animals / Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article