Your browser doesn't support javascript.
loading
MicroRNAs in Small Extracellular Vesicles from Amniotic Fluid and Maternal Plasma Associated with Fetal Palate Development in Mice.
Zhao, Xige; Peng, Xia; Wang, Zhiwei; Zheng, Xiaoyu; Wang, Xiaotong; Wang, Yijia; Chen, Jing; Yuan, Dong; Liu, Ying; Du, Juan.
Afiliação
  • Zhao X; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Peng X; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Wang Z; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Zheng X; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Wang X; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Wang Y; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Chen J; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Yuan D; Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China.
  • Liu Y; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
  • Du J; Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4,
Int J Mol Sci ; 24(24)2023 Dec 06.
Article em En | MEDLINE | ID: mdl-38139002
ABSTRACT
Cleft palate (CP) is a common congenital birth defect. Cellular and morphological processes change dynamically during palatogenesis, and any disturbance in this process could result in CP. However, the molecular mechanisms steering this fundamental phase remain unclear. One study suggesting a role for miRNAs in palate development via maternal small extracellular vesicles (SEVs) drew our attention to their potential involvement in palatogenesis. In this study, we used an in vitro model to determine how SEVs derived from amniotic fluid (ASVs) and maternal plasma (MSVs) influence the biological behaviors of mouse embryonic palatal mesenchyme (MEPM) cells and medial edge epithelial (MEE) cells; we also compared time-dependent differential expression (DE) miRNAs in ASVs and MSVs with the DE mRNAs in palate tissue from E13.5 to E15.5 to study the dynamic co-regulation of miRNAs and mRNAs during palatogenesis in vivo. Our results demonstrate that some pivotal biological activities, such as MEPM proliferation, migration, osteogenesis, and MEE apoptosis, might be directed, in part, by stage-specific MSVs and ASVs. We further identified interconnected networks and key miRNAs such as miR-744-5p, miR-323-5p, and miR-3102-5p, offering a roadmap for mechanistic investigations and the identification of early CP biomarkers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fissura Palatina / MicroRNAs / Vesículas Extracelulares Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fissura Palatina / MicroRNAs / Vesículas Extracelulares Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article