A Deep Learning-Based System for the Assessment of Dental Caries Using Colour Dental Photographs.
Stud Health Technol Inform
; 310: 911-915, 2024 Jan 25.
Article
em En
| MEDLINE
| ID: mdl-38269941
ABSTRACT
D1ental caries remains the most common chronic disease in childhood, affecting almost half of all children globally. Dental care and examination of children living in remote and rural areas is an ongoing challenge that has been compounded by COVID. The development of a validated system with the capacity to screen large numbers of children with some degree of automation has the potential to facilitate remote dental screening at low costs. In this study, we aim to develop and validate a deep learning system for the assessment of dental caries using color dental photos. Three state-of-the-art deep learning networks namely VGG16, ResNet-50 and Inception-v3 were adopted in the context. A total of 1020 child dental photos were used to train and validate the system. We achieved an accuracy of 79% with precision and recall respectively 95% and 75% in classifying 'caries' versus 'sound' with inception-v3.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Cárie Dentária
/
Aprendizado Profundo
Limite:
Child
/
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Assunto da revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Austrália