Your browser doesn't support javascript.
loading
A Deep Learning-Based System for the Assessment of Dental Caries Using Colour Dental Photographs.
Mehdizadeh, Maryam; Estai, Mohamed; Vignarajan, Janardhan; Patel, Jilen; Granich, Joanna; Zaniovich, Michael; Kruger, Estie; Winters, John; Tennant, Marc; Saha, Sajib.
Afiliação
  • Mehdizadeh M; The Australian e-Health Research Centre, CSIRO, Kensington, Australia.
  • Estai M; The Australian e-Health Research Centre, CSIRO, Kensington, Australia.
  • Vignarajan J; School of Human Sciences, The University of Western Australia, Crawley, Australia.
  • Patel J; The Australian e-Health Research Centre, CSIRO, Kensington, Australia.
  • Granich J; UWA Dental school, The University of Western Australia, Crawley, Australia.
  • Zaniovich M; Department of Pediatric Dentistry, Perth Children Hospital, Nedlands, Australia.
  • Kruger E; Telethon Kids Institute, The University of Western Australia, Crawley, Australia.
  • Winters J; Aria Dental, Perth, Australia.
  • Tennant M; School of Human Sciences, The University of Western Australia, Crawley, Australia.
  • Saha S; Department of Pediatric Dentistry, Perth Children Hospital, Nedlands, Australia.
Stud Health Technol Inform ; 310: 911-915, 2024 Jan 25.
Article em En | MEDLINE | ID: mdl-38269941
ABSTRACT
D1ental caries remains the most common chronic disease in childhood, affecting almost half of all children globally. Dental care and examination of children living in remote and rural areas is an ongoing challenge that has been compounded by COVID. The development of a validated system with the capacity to screen large numbers of children with some degree of automation has the potential to facilitate remote dental screening at low costs. In this study, we aim to develop and validate a deep learning system for the assessment of dental caries using color dental photos. Three state-of-the-art deep learning networks namely VGG16, ResNet-50 and Inception-v3 were adopted in the context. A total of 1020 child dental photos were used to train and validate the system. We achieved an accuracy of 79% with precision and recall respectively 95% and 75% in classifying 'caries' versus 'sound' with inception-v3.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cárie Dentária / Aprendizado Profundo Limite: Child / Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cárie Dentária / Aprendizado Profundo Limite: Child / Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália