Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2314166121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768348

RESUMEN

The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.


Asunto(s)
Transporte Activo de Núcleo Celular , COVID-19 , Proteínas de Transporte Nucleocitoplasmático , ARN Mensajero , Proteínas de Unión al ARN , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Animales , COVID-19/virología , COVID-19/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral , Núcleo Celular/metabolismo , Células Vero , Virulencia , Chlorocebus aethiops , Células HEK293
2.
J Biol Chem ; : 107871, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39384042

RESUMEN

Influenza A viruses have eight genomic RNAs that are transcribed in the host cell nucleus. Two of the viral mRNAs undergo alternative splicing. The M1 mRNA encodes the matrix protein 1 (M1) and is also spliced into M2 mRNA, which encodes the proton channel matrix protein 2 (M2). Our previous studies have shown that the cellular NS1-binding protein (NS1-BP) interacts with the viral non-structural protein 1 (NS1) and M1 mRNA to promote M1 to M2 splicing. Another pool of NS1 protein binds the mRNA export receptor NXF1 (nuclear RNA export factor-1), leading to nuclear retention of cellular mRNAs. Here we show a series of biochemical and cell biological findings that suggest a model for nuclear export of M1 and M2 mRNAs despite the mRNA nuclear export inhibition imposed by the viral NS1 protein. NS1-BP competes with NS1 for NXF1 binding, allowing the recruitment of NXF1 to the M mRNAs after splicing. NXF1 then binds GANP (Germinal-center Associated Nuclear Protein), a member of the TRanscription and EXport complex (TREX)-2. Although both NS1 and NS1-BP remain in complex with GANP-NXF1, they dissociate once this complex docks at the nuclear pore complex (NPC), and the M mRNAs are translocated to the cytoplasm. Since this mRNA nuclear export pathway is key for expression of M1 and M2 proteins that function in viral intracellular trafficking and budding, these viral-host interactions are critical for influenza virus replication.

3.
Proc Natl Acad Sci U S A ; 119(25): e2206046119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704758

RESUMEN

Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.


Asunto(s)
Núcleo Celular , Motas Nucleares , Proteínas Quinasas , Empalme del ARN , Transporte Activo de Núcleo Celular , Núcleo Celular/enzimología , Células HeLa , Humanos , Proteínas Quinasas/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/genética
4.
Cell ; 139(3): 512-22, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19853288

RESUMEN

Gene regulatory circuits with different architectures (patterns of regulatory interactions) can generate similar dynamics. This raises the question of why a particular circuit architecture is selected to implement a given cellular process. To investigate this problem, we compared the Bacillus subtilis circuit that regulates differentiation into the competence state to an engineered circuit with an alternative architecture (SynEx) in silico and in vivo. Time-lapse microscopy measurements showed that SynEx cells generated competence dynamics similar to native cells and reconstituted the physiology of differentiation. However, architectural differences between the circuits altered the dynamic distribution of stochastic fluctuations (noise) during circuit operation. This distinction in noise causes functional differences between the circuits by selectively controlling the timing of competence episodes and response of the system to various DNA concentrations. These results reveal a tradeoff between temporal precision and physiological response range that is controlled by distinct noise characteristics of alternative circuit architectures.


Asunto(s)
Bacillus subtilis/fisiología , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Modelos Biológicos , Bacillus subtilis/genética , ADN/metabolismo , Retroalimentación , Transformación Bacteriana
5.
J Biol Chem ; 291(40): 21171-21183, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528606

RESUMEN

N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impß, Kapß2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapß2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impß, Kapß2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.


Asunto(s)
Histonas/química , Carioferinas/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagénesis , Unión Proteica , Dominios Proteicos
6.
Bioinformatics ; 31(9): 1357-65, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25515756

RESUMEN

MOTIVATION: Classical nuclear export signals (NESs) are short cognate peptides that direct proteins out of the nucleus via the CRM1-mediated export pathway. CRM1 regulates the localization of hundreds of macromolecules involved in various cellular functions and diseases. Due to the diverse and complex nature of NESs, reliable prediction of the signal remains a challenge despite several attempts made in the last decade. RESULTS: We present a new NES predictor, LocNES. LocNES scans query proteins for NES consensus-fitting peptides and assigns these peptides probability scores using Support Vector Machine model, whose feature set includes amino acid sequence, disorder propensity, and the rank of position-specific scoring matrix score. LocNES demonstrates both higher sensitivity and precision over existing NES prediction tools upon comparative analysis using experimentally identified NESs. AVAILABILITY AND IMPLEMENTATION: LocNES is freely available at http://prodata.swmed.edu/LocNES CONTACT: yuhmin.chook@utsouthwestern.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Carioferinas/química , Señales de Exportación Nuclear , Receptores Citoplasmáticos y Nucleares/química , Programas Informáticos , Secuencia de Aminoácidos , Secuencia de Consenso , Humanos , Posición Específica de Matrices de Puntuación , Análisis de Secuencia de Proteína , Máquina de Vectores de Soporte , Proteína Exportina 1
7.
Proc Natl Acad Sci U S A ; 110(17): 7091-6, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23572583

RESUMEN

Gene regulatory circuits can receive multiple simultaneous inputs, which can enter the system through different locations. It is thus necessary to establish how these genetic circuits integrate multiple inputs as a function of their relative entry points. Here, we use the dynamic circuit regulating competence for DNA uptake in Bacillus subtilis as a model system to investigate this issue. Specifically, we map the response of single cells in vivo to a combination of (i) a chemical signal controlling the constitutive expression of key competence genes, and (ii) a genetic perturbation in the form of copy number variation of one of these genes, which mimics the level of stress signals sensed by the bacteria. Quantitative time-lapse fluorescence microscopy shows that a variety of dynamical behaviors can be reached by the combination of the two inputs. Additionally, the integration depends strongly on the relative locations where the two perturbations enter the circuit. Specifically, when the two inputs act upon different circuit elements, their integration generates novel dynamical behavior, whereas inputs affecting the same element do not. An in silico bidimensional bifurcation analysis of a mathematical model of the circuit offers good quantitative agreement with the experimental observations, and sheds light on the dynamical mechanisms leading to the different integrated responses exhibited by the gene regulatory circuit.


Asunto(s)
Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Modelos Biológicos , Variaciones en el Número de Copia de ADN/genética , Microscopía Fluorescente , Simulación de Dinámica Molecular , Imagen de Lapso de Tiempo
8.
Proc Natl Acad Sci U S A ; 109(46): 18891-6, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23012477

RESUMEN

From microbial biofilm communities to multicellular organisms, 3D macroscopic structures develop through poorly understood interplay between cellular processes and mechanical forces. Investigating wrinkled biofilms of Bacillus subtilis, we discovered a pattern of localized cell death that spatially focuses mechanical forces, and thereby initiates wrinkle formation. Deletion of genes implicated in biofilm development, together with mathematical modeling, revealed that ECM production underlies the localization of cell death. Simultaneously with cell death, we quantitatively measured mechanical stiffness and movement in WT and mutant biofilms. Results suggest that localized cell death provides an outlet for lateral compressive forces, thereby promoting vertical mechanical buckling, which subsequently leads to wrinkle formation. Guided by these findings, we were able to generate artificial wrinkle patterns within biofilms. Formation of 3D structures facilitated by cell death may underlie self-organization in other developmental systems, and could enable engineering of macroscopic structures from cell populations.


Asunto(s)
Bacillus subtilis/fisiología , Biopelículas/crecimiento & desarrollo , Eliminación de Gen , Genes Bacterianos/fisiología
9.
bioRxiv ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39416201

RESUMEN

The nuclear export receptor Exportin 1 (XPO1/CRM1) is often overexpressed in cancer cells resulting in aberrant localization of many cancer-related protein cargoes. The XPO1 inhibitor and cancer drug selinexor (KPT-330), and its analog KPT-185, block XPO1-cargo binding thereby restoring cargo localization. Selinexor binding induces cullin-RING E3 ubiquitin ligase (CRL) substrate receptor ASB8-mediated XPO1 degradation. Here we reveal the mechanism of inhibitor-XPO1 engagement by CRL5ASB8. Cryogenic electron microscopy (cryo-EM) structures show ASB8 binding to a large surface of selinexor/KPT-185-XPO1 that includes a three-dimensional degron unique to the drug-bound exportin. The structure explains weak XPO1-ASB8 binding in the absence of selinexor/KPT-185 that is unproductive for proteasomal degradation, and the substantial affinity increase upon selinexor/KPT-185 conjugation, which results in CRL5 ASB8 -mediated XPO1 ubiquitination. In contrast to previously characterized small molecule degraders, which all act as molecular glues, selinexor/KPT-185 binds extensively to XPO1 but hardly contacts ASB8. Instead, selinexor/KPT-185 binds XPO1 and stabilizes a unique conformation of the NES/inhibitor-binding groove that binds ASB8. Selinexor/KPT-185 is an allosteric degrader. We have explained how drug-induced protein degradation is mediated by a CRL5 system through an allosteric rather than a molecular glue mechanism, expanding the modes of targeted protein degradation beyond the well-known molecular glues of CRL4.

10.
Nat Commun ; 14(1): 2304, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085480

RESUMEN

Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs. By degrading components of the TREX-2 complex (GANP, Germinal-center Associated Nuclear Protein; PCID2, PCI domain containing 2), we show that influenza mRNAs require the TREX-2 complex for nuclear export and replication. Furthermore, we found that cellular mRNAs whose export is dependent on GANP have a small number of exons, a high mean exon length, long 3' UTR, and low GC content. Some of these features are shared by influenza virus mRNAs. Additionally, we identified a 45 nucleotide RNA signal from influenza virus HA mRNA that is sufficient to mediate GANP-dependent mRNA export. Thus, we report a role for the TREX-2 complex in nuclear export of influenza mRNAs and identified RNA determinants associated with the TREX-2-dependent mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular , Gripe Humana , Orthomyxoviridae , Transporte de ARN , Humanos , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Gripe Humana/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Orthomyxoviridae/genética , Transporte de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738983

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas Virales , Humanos , COVID-19/virología , Inmunidad Innata , Interferones/genética , Interferones/metabolismo , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
Mol Syst Biol ; 7: 557, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22146301

RESUMEN

Multipotent differentiation, where cells adopt one of several possible fates, occurs in diverse systems ranging from bacteria to mammals. This decision-making process is driven by multiple differentiation programs that operate simultaneously in the cell. How these programs interact to govern cell fate choice is poorly understood. To investigate this issue, we simultaneously measured activities of the competing sporulation and competence programs in single Bacillus subtilis cells. This approach revealed that these competing differentiation programs progress independently without cross-regulation before the decision point. Cells seem to arrive at a fate choice through differences in the relative timing between the two programs. To test this proposed dynamic mechanism, we altered the relative timing by engineering artificial cross-regulation between the sporulation and competence circuits. Results suggest a simple model that does not require a checkpoint or intricate cross-regulation before cellular decision-making. Rather, cell fate choice appears to be the outcome of a 'molecular race' between differentiation programs that compete in time, providing a simple dynamic mechanism for decision-making.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Meiosis/fisiología , ARN de Hongos/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Análisis por Conglomerados , Genes Fúngicos , Genómica/métodos , Meiosis/genética , Fenómenos Microbiológicos , Conformación de Ácido Nucleico , ARN sin Sentido , ARN de Hongos/metabolismo , ARN no Traducido , Factores de Tiempo , Transcripción Genética
13.
bioRxiv ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36299428

RESUMEN

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

14.
Sci Rep ; 11(1): 3754, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580145

RESUMEN

Mutations in the RNA-binding protein FUS cause familial amyotropic lateral sclerosis (ALS). Several mutations that affect the proline-tyrosine nuclear localization signal (PY-NLS) of FUS cause severe juvenile ALS. FUS also undergoes liquid-liquid phase separation (LLPS) to accumulate in stress granules when cells are stressed. In unstressed cells, wild type FUS resides predominantly in the nucleus as it is imported by the importin Karyopherin-ß2 (Kapß2), which binds with high affinity to the C-terminal PY-NLS of FUS. Here, we analyze the interactions between two ALS-related variants FUS(P525L) and FUS(R495X) with importins, especially Kapß2, since they are still partially localized to the nucleus despite their defective/missing PY-NLSs. The crystal structure of the Kapß2·FUS(P525L)PY-NLS complex shows the mutant peptide making fewer contacts at the mutation site, explaining decreased affinity for Kapß2. Biochemical analysis revealed that the truncated FUS(R495X) protein, although missing the PY-NLS, can still bind Kapß2 and suppresses LLPS. FUS(R495X) uses its C-terminal tandem arginine-glycine-glycine regions, RGG2 and RGG3, to bind the PY-NLS binding site of Kapß2 for nuclear localization in cells when arginine methylation is inhibited. These findings suggest the importance of the C-terminal RGG regions in nuclear import and LLPS regulation of ALS variants of FUS that carry defective PY-NLSs.


Asunto(s)
Proteína FUS de Unión a ARN/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/genética , Sitios de Unión , Núcleo Celular/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Señales de Localización Nuclear/genética , Unión Proteica , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/ultraestructura , beta Carioferinas/genética , beta Carioferinas/ultraestructura
15.
Mol Cell Biol ; 27(12): 4454-64, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17438140

RESUMEN

Gradients of Wnt/beta-catenin signaling coordinate development and physiological homeostasis in metazoan animals. Proper embryonic development of the fruit fly Drosophila melanogaster requires the Naked cuticle (Nkd) protein to attenuate a gradient of Wnt/beta-catenin signaling across each segmental anlage. Nkd inhibits Wnt signaling by binding the intracellular protein Dishevelled (Dsh). Mice and humans have two nkd homologs, nkd1 and nkd2, whose encoded proteins can bind Dsh homologs (the Dvl proteins) and inhibit Wnt signaling. To determine whether nkd genes are necessary for murine development, we replaced nkd exons that encode Dvl-binding sequences with IRES-lacZ/neomycin cassettes. Mutants homozygous for each nkd(lacZ) allele are viable with slightly reduced mean litter sizes. Surprisingly, double-knockout mice are viable, with subtle alterations in cranial bone morphology that are reminiscent of mutation in another Wnt/beta-catenin antagonist, axin2. Our data show that nkd function in the mouse is dispensable for embryonic development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Portadoras/genética , Viabilidad Fetal/genética , Mutación , Fosfoproteínas/antagonistas & inhibidores , Proteínas Wnt/antagonistas & inhibidores , Alelos , Animales , Proteínas de Unión al Calcio , Cruzamientos Genéticos , Proteínas Dishevelled , Proteínas de Drosophila , Desarrollo Embrionario , Exones , Homocigoto , Operón Lac/genética , Tamaño de la Camada/genética , Ratones , Ratones Noqueados , Transducción de Señal
16.
Elife ; 82019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30855230

RESUMEN

We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.


Asunto(s)
Histonas/química , Histonas/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Carioferinas/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Xenopus
17.
Dev Biol ; 311(2): 538-53, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17942091

RESUMEN

Robust animal development, tissue homeostasis, and stem cell renewal requires precise control of the Wnt/beta-catenin signaling axis. In the embryo of the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene attenuates signaling by the Wnt ligand Wingless (Wg) during segmentation. nkd mutants have been reported to exhibit abnormalities in wg transcription, Wg protein distribution and/or transport, and the intracellular response to Wg, but the relationship between each alteration and the molecular mechanism of Nkd action remains unclear. In addition, whether Nkd acts in a cell-autonomous or nonautonomous fashion in the embryo is not known. Mammalian Nkd homologs have N-terminal consensus sequences that direct the post-translational addition of a lipophilic myristoyl moiety, but fly and mosquito Nkd, while sharing N-terminal sequence homology, lack a myristoylation consensus sequence. Here we provide evidence that fly Nkd acts cell-autonomously in the embryo, with its N-terminus able to confer unique functional properties and membrane association that cannot be mimicked in vivo by heterologous myristoylation consensus sequences. In conjunction with our recent observation that Nkd requires nuclear localization for function, our data suggest that Nkd acts at more than one subcellular location within signal-receiving cells to attenuate Wg signaling.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Ácidos Mirísticos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Morfogénesis , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt1
18.
Curr Opin Cell Biol ; 52: 30-42, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414591

RESUMEN

Malfunction of nuclear-cytoplasmic transport contributes to many diseases including cancer. Defective nuclear transport leads to changes in both the physiological levels and temporal-spatial location of tumor suppressors, proto-oncogenes and other macromolecules that in turn affect the tumorigenesis process and drug sensitivity of cancer cells. In addition to their nuclear transport functions in interphase, Karyopherin nuclear transport receptors also have important roles in mitosis and chromosomal integrity. Therefore, alterations in the expressions or regular functions of Karyopherins may have substantial effects on the course and outcome of diseases.


Asunto(s)
Carioferinas/genética , Neoplasias/genética , Humanos , Neoplasias/metabolismo
19.
Sci Rep ; 8(1): 7083, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728608

RESUMEN

ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disease characterized by the redistribution of the RNA binding protein TDP-43 in affected neurons: from predominantly nuclear to aggregated in the cytosol. However, the determinants of TDP-43 localization and the cellular insults that promote redistribution are incompletely understood. Here, we show that the putative Nuclear Export Signal (NES) is not required for nuclear egress of TDP-43. Moreover, when the TDP-43 domain which contains the putative NES is fused to a reporter protein, YFP, the presence of the NES is not sufficient to mediate nuclear exclusion of the fusion protein. We find that the previously studied "∆NES" mutant, in which conserved hydrophobic residues are mutated to alanines, disrupts both solubility and splicing function. We further show that nuclear export of TDP-43 is independent of the exportin XPO1. Finally, we provide evidence that nuclear egress of TDP-43 is size dependent; nuclear export of dTomato TDP-43 is significantly impaired compared to Flag TDP-43. Together, these results suggest nuclear export of TDP-43 is predominantly driven by passive diffusion.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/química , Genes Reporteros , Humanos , Carioferinas/química , Carioferinas/metabolismo , Ratones , Modelos Moleculares , Señales de Exportación Nuclear , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Células Piramidales/metabolismo , Ratas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Ribonucleósido Difosfato Reductasa/química , Ribonucleósido Difosfato Reductasa/metabolismo , Proteína Exportina 1
20.
Mol Biol Cell ; 29(17): 2037-2044, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29927350

RESUMEN

CRM1 (Exportin1/XPO1) exports hundreds of broadly functioning protein cargoes out of the cell nucleus by binding to their classical nuclear export signals (NESs). The 8- to 15-amino-acid-long NESs contain four to five hydrophobic residues and are highly diverse in both sequence and CRM1-bound structure. Here we examine the relationship between nuclear export activities of 24 different NES peptides in cells and their CRM1-NES affinities. We found that binding affinity and nuclear export activity are linearly correlated for NESs with dissociation constants ( Kds) between tens of nanomolar to tens of micromolar. NESs with Kds outside this range have significantly reduced nuclear export activities. These include two unusually tight-binding peptides, one from the nonstructural protein 2 of murine minute virus (MVM NS2) and the other a mutant of the protein kinase A inhibitor (PKI) NES. The crystal structure of CRM1-bound MVM NS2NES suggests that extraordinarily tight CRM1 binding arises from intramolecular contacts within the NES that likely stabilizes the CRM1-bound conformation in free peptides. This mechanistic understanding led to the design of two novel peptide inhibitors that bind CRM1 with picomolar affinity.


Asunto(s)
Núcleo Celular/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Señales de Exportación Nuclear , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Células HeLa , Humanos , Péptidos/química , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Proteínas Virales/química , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA