Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Comput Biol ; 18(1): e1009812, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089922

RESUMEN

Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.


Asunto(s)
Actomiosina , Uniones Adherentes , Actomiosina/metabolismo , Uniones Adherentes/fisiología , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Epitelio/metabolismo , Morfogénesis
2.
Phys Rev Lett ; 123(11): 118101, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573254

RESUMEN

There is increasing evidence that mammalian cells not only crawl on substrates but can also swim in fluids. To elucidate the mechanisms of the onset of motility of cells in suspension, a model which couples actin and myosin kinetics to fluid flow is proposed and solved for a spherical shape. The swimming speed is extracted in terms of key parameters. We analytically find super- and subcritical bifurcations from a nonmotile to a motile state and also spontaneous polarity oscillations that arise from a Hopf bifurcation. Relaxing the spherical assumption, the obtained shapes show appealing trends.

3.
PLoS Comput Biol ; 13(3): e1005443, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28346461

RESUMEN

Downstream of gene expression, effectors such as the actomyosin contractile machinery drive embryo morphogenesis. During Drosophila embryonic axis extension, actomyosin has a specific planar-polarised organisation, which is responsible for oriented cell intercalation. In addition to these cell rearrangements, cell shape changes also contribute to tissue deformation. While cell-autonomous dynamics are well described, understanding the tissue-scale behaviour challenges us to solve the corresponding mechanical problem at the scale of the whole embryo, since mechanical resistance of all neighbouring epithelia will feedback on individual cells. Here we propose a novel numerical approach to compute the whole-embryo dynamics of the actomyosin-rich apical epithelial surface. We input in the model specific patterns of actomyosin contractility, such as the planar-polarisation of actomyosin in defined ventro-lateral regions of the embryo. Tissue strain rates and displacements are then predicted over the whole embryo surface according to the global balance of stresses and the material behaviour of the epithelium. Epithelia are modelled using a rheological law that relates the rate of deformation to the local stresses and actomyosin anisotropic contractility. Predicted flow patterns are consistent with the cell flows observed when imaging Drosophila axis extension in toto, using light sheet microscopy. The agreement between model and experimental data indicates that the anisotropic contractility of planar-polarised actomyosin in the ventro-lateral germband tissue can directly cause the tissue-scale deformations of the whole embryo. The three-dimensional mechanical balance is dependent on the geometry of the embryo, whose curved surface is taken into account in the simulations. Importantly, we find that to reproduce experimental flows, the model requires the presence of the cephalic furrow, a fold located anteriorly of the extending tissues. The presence of this geometric feature, through the global mechanical balance, guides the flow and orients extension towards the posterior end.


Asunto(s)
Actomiosina/fisiología , Drosophila/embriología , Drosophila/fisiología , Embrión no Mamífero/fisiología , Desarrollo Embrionario/fisiología , Modelos Biológicos , Animales , Tipificación del Cuerpo/fisiología , Simulación por Computador , Embrión no Mamífero/embriología , Mecanotransducción Celular/fisiología , Proteínas Motoras Moleculares/fisiología , Estrés Mecánico
4.
Proc Natl Acad Sci U S A ; 112(9): 2740-5, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730854

RESUMEN

Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force-velocity relationship.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Modelos Biológicos , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Miosinas/metabolismo , Animales , Línea Celular , Mecanotransducción Celular/fisiología , Ratones , Ratas
5.
BMC Biol ; 13: 98, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26596771

RESUMEN

BACKGROUND: Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. RESULTS: We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. CONCLUSIONS: Our results show that in an epithelial tissue undergoing net contraction, stiffness and stress are coupled. Dorsal closure cell apical contraction is driven by the medial region where the relative increase in stress is greater than that of stiffness. At junctions, by contrast, the relative increase in the mechanical properties is the same, so the junctional contribution to tissue deformation is constant over time. An increase in myosin activity is likely to underlie, at least in part, the change in medioapical properties and we suggest that its greater effect on stress relative to stiffness is fundamental to actomyosin systems and confers on tissues the ability to regulate contraction rates in response to changes in external mechanics.


Asunto(s)
Drosophila melanogaster/embriología , Animales , Fenómenos Biomecánicos , Embrión no Mamífero/embriología , Células Epiteliales/metabolismo , Fluorescencia , Miosinas/metabolismo
6.
Eur J Cell Biol ; 102(2): 151294, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36791652

RESUMEN

Live staining of actin brings valuable information in the field of mechanobiology. Gene transfer of GFP-actin has been reported to disturb cell rheological properties while gene transfer of fluorescent actin binding proteins was not. However the influence of gene transfer on cellular forces in adhered cells has never been investigated. This would provide a more complete picture of mechanical disorders induced by actin live staining for mechanobiology studies. Indeed, most of these techniques were shown to alter cell morphology. Change in cell morphology may in itself be sufficient to perturb cellular forces. Here we focus on quantifying the alterations of cellular stresses that result from baculoviral transduction of GFP-actin in MDCK cell line. We report that GFP-actin transduction increases the proportion of cells with large intracellular or surface stresses, especially in epithelia with low cell density. We show that the enhancement of the mechanical stresses is accompanied by small perturbations of cell shape, but not by a significant change in cell size. We thus conclude that this live staining method enhances the cellular forces but only brings subtle shape alterations.


Asunto(s)
Actinas , Citoesqueleto , Actinas/metabolismo , Citoesqueleto/metabolismo , Línea Celular , Forma de la Célula
7.
Interface Focus ; 12(6): 20220038, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36330322

RESUMEN

Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.

8.
Nat Commun ; 13(1): 3348, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688832

RESUMEN

Cell apical constriction driven by actomyosin contraction forces is a conserved mechanism during tissue folding in embryo development. While much is now understood of the molecular mechanism responsible for apical constriction and of the tissue-scale integration of the ensuing in-plane deformations, it is still not clear if apical actomyosin contraction forces are necessary or sufficient per se to drive tissue folding. To tackle this question, we use the Drosophila embryo model system that forms a furrow on the ventral side, initiating mesoderm internalization. Past computational models support the idea that cell apical contraction forces may not be sufficient and that active or passive cell apico-basal forces may be necessary to drive cell wedging leading to tissue furrowing. By using 3D computational modelling and in toto embryo image analysis and manipulation, we now challenge this idea and show that embryo-scale force balance at the tissue surface, rather than cell-autonomous shape changes, is necessary and sufficient to drive a buckling of the epithelial surface forming a furrow which propagates and initiates embryo gastrulation.


Asunto(s)
Actomiosina , Gastrulación , Actomiosina/metabolismo , Animales , Forma de la Célula , Drosophila , Drosophila melanogaster , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Morfogénesis
9.
Biophys J ; 101(3): 611-21, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21806929

RESUMEN

The initial stages of spreading of a suspended cell onto a substrate under the effect of (specific or nonspecific) adhesion exhibit a universal behavior, which is cell-type independent. We show that this behavior is governed only by cell-scale phenomena. This can be understood if the main retarding force that opposes cell adhesion is of mechanical origin, that is, dissipation occurring during the spreading. By comparing several naive models that generate different patterns of dissipation, we show by numerical simulation that only dissipation due to the deformation of the actin cortex is compatible with the experimental observations. This viscous-like dissipation corresponds to the energetic cost of rearranging the cytoskeleton, and is the trace of all dissipative events occurring in the cell cortex during the early spreading, such as the binding and unbinding of cross-linkers and molecular friction.


Asunto(s)
Actinas/metabolismo , Forma de la Célula , Modelos Biológicos , Actomiosina/metabolismo , Fenómenos Biomecánicos , Línea Celular Tumoral , Humanos , Espectrometría de Fluorescencia , Viscosidad
10.
Curr Biol ; 29(22): 3766-3777.e4, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679940

RESUMEN

Coordinating mitotic spindle and cytokinetic furrow positioning is essential to ensure proper DNA segregation. Here, we present a novel mechanism, which corrects DNA segregation defects due to cytokinetic furrow mispositioning during the first division of C. elegans embryos. Correction of DNA segregation defects due to an abnormally anterior cytokinetic furrow relies on the concomitant and opposite displacements of the furrow and of the anterior nucleus toward the posterior and anterior poles of the embryo, respectively. It also coincides with cortical blebbing and an anteriorly directed cytoplasmic flow. Although microtubules contribute to nuclear displacement, relaxation of an excessive tension at the anterior cortex plays a central role in the correction process and simultaneously regulates cytoplasmic flow as well as nuclear and furrow displacements. This work thus reveals the existence of a so-far uncharacterized correction mechanism, which is critical to correct DNA segregation defects due to cytokinetic furrow mispositioning.


Asunto(s)
Segregación Cromosómica/fisiología , Citocinesis/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , Núcleo Celular , ADN , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología
11.
Curr Opin Genet Dev ; 51: 78-87, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30077073

RESUMEN

We review recent developments in the understanding of the biomechanics of apicomedial actomyosin and how its contractility can tense and deform tissue. Myosin pulses are driven by a biochemical oscillator but how they are modulated by the mechanical context remains unclear. On the other hand, the emergence of tissue behaviour is highly dependent on the material properties of actin, on how strongly components are connected and on the influence of neighbouring tissues. We further review the use of constitutive equations in exploring the mechanics of epithelial apices dominated by apicomedial Myosin contractility.


Asunto(s)
Actinas/química , Actomiosina/química , Epitelio/química , Miosinas/química , Actomiosina/metabolismo , Fenómenos Biomecánicos , Epitelio/metabolismo , Humanos
12.
Interface Focus ; 6(5): 20160042, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708765

RESUMEN

When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell 'footprint' is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA