Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34131080

RESUMEN

To capture where things are and what they are doing, the visual system may extract the position and motion of each object relative to its surrounding frame of reference [K. Duncker, Routledge and Kegan Paul, London 161-172 (1929) and G. Johansson, Acta Psychol (Amst.) 7, 25-79 (1950)]. Here we report a particularly powerful example where a paradoxical stabilization is produced by a moving frame. We first take a frame that moves left and right and we flash its right edge before, and its left edge after, the frame's motion. For all frame displacements tested, the two edges are perceived as stabilized, with the left edge on the left and right edge on the right, separated by the frame's width as if the frame were not moving. This stabilization is paradoxical because the motion of the frame itself remains visible, albeit much reduced. A second experiment demonstrated that unlike other motion-induced position shifts (e.g., flash lag, flash grab, flash drag, or Fröhlich), the illusory shift here is independent of speed and is set instead by the distance of the frame's travel. In this experiment, two probes are flashed inside the frame at the same physical location before and after the frame moves. Despite being physically superimposed, the probes are perceived widely separated, again as if they were seen in the frame's coordinates and the frame were stationary. This paradoxical stabilization suggests a link to visual stability across eye movements where the displacement of the entire visual scene may act as a frame to stabilize the perception of relative locations.

2.
Cortex ; 151: 89-104, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398757

RESUMEN

Valdes-Sosa, Cobo, and Pinilla (1998) introduced a transparent-motion design that provided evidence of object-based attention whereby attention embraces all features of an attentionally cued perceptual object including new unpredictable features such as a brief translation. Subsequent studies using variants of that design appeared to provide further behavioral, electrophysiological, and brain imaging evidence of object-based attention. Stoner and Blanc (2010) observed, however, that these previous results could potentially be explained by feature-based competition/normalization models of attention. To distinguish between the object-based and feature-based accounts, they introduced "feature swaps" into a delayed-onset variant of the transparent-motion design (Reynolds, Alborzian, & Stoner, 2003). Whereas the object-based attention account predicted that the effect of cueing would survive these feature swaps, the motion-competition account predicted that the effect of cueing would be reversed by these feature swaps. The behavioral results of Stoner and Blanc (2010) supported the object-based account, and in doing so, provided evidence that the attentional advantage in this design is spatially selective at the scale of the intermixed texture elements (i.e., dots) of the overlapping and moving dot fields. In the present study, we used the design of Stoner and Blanc (2010) to investigate both psychophysical performance and evoked activities under different cueing and feature swapping conditions. We confirmed that the behavioral effects of attentional cueing survived feature swaps and found event-related potential (ERP) correlates of those effects in the N1 component range over occipital and parieto-occipital scalp sites. These modulations of the neural activity were, moreover, significantly associated with variation in behavioral performance values across the different conditions. Our findings thus provide the first evidence of the role of the N1 component in object-based attention in this transparent-motion design under conditions that rule out feature-based mechanisms and that reveal selective processing at a fine spatial scale.


Asunto(s)
Corteza Visual , Percepción Visual , Atención/fisiología , Señales (Psicología) , Potenciales Evocados/fisiología , Humanos , Estimulación Luminosa/métodos , Corteza Visual/fisiología , Percepción Visual/fisiología
3.
Atten Percept Psychophys ; 82(6): 3065-3071, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32378147

RESUMEN

If a patch of texture drifts in one direction while its internal texture drifts in the orthogonal direction, the perceived direction of this double-drift stimulus (also known as the infinite regress and curveball illusions) deviates strongly from its physical direction. Here, we use double-drift stimuli to construct two types of search arrays: The first had an oddball target in terms of the physical trajectories, but no oddball for the perceived trajectory, whereas the second had a perceptual oddball, but no physical oddball. We used these two arrays to determine whether pop-out operates over physical or perceived trajectories. Participants reported the location of the odd double-drift stimulus that had either a unique physical or perceived trajectory in a set of four or eight items. When the distractors all shared one perceived trajectory, but the target had an odd perceived trajectory, it popped out even though the physical trajectories of the stimuli were mixed: Accuracy rates were at ceiling, and response times decreased with increasing set size. In contrast, participants were significantly less accurate and slower at finding the physical oddball when all the paths had a common perceived trajectory. Moreover, responses became less accurate and slower with increasing set size. Our findings suggest that, at least for this type of stimulus, perceptual features can be processed rapidly, whereas the search for physical features is very inefficient.


Asunto(s)
Ilusiones , Percepción de Movimiento , Humanos , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA