RESUMEN
Transthyretin (TTR) amyloidosis is a hereditary life-threatening disease characterized by deposition of amyloid fibrils. The main causes of TTR amyloidosis are mutations in the TTR gene that lead to the production of misfolded TTR protein. Reducing the production of toxic protein in the liver is a validated strategy to treat TTR amyloidosis. In this study, we established a humanized mouse model that expresses mutant human TTR (hTTR; V30M) protein in the liver to model TTR amyloidosis. Then, we compared the efficiency of reducing the expression of mutant hTTR by dual adeno-associated virus 8 (AAV8)-mediated split SpCas9 with that by single AAV8-mediated Nme2Cas9 in this model. With two gRNAs targeting different exons, dual AAV-mediated split SpCas9 system achieved efficiencies of 37% and 34% reduction of hTTR mRNA and reporter GFP expression, respectively, in the liver. Surprisingly, single AAV-mediated Nme2Cas9 treatment resulted in 65% and 71% reduction of hTTR mRNA and reporter GFP, respectively. No significant editing was identified in predicted off-target sites in the mouse and human genomes after Nme2Cas9 targeting. Thus, we provide proof of principle for using single AAV-mediated CRISPR-Nme2Cas9 to effectively reduce mutant hTTR expression in vivo, which may translate into gene therapy for TTR amyloidosis.
Asunto(s)
Neuropatías Amiloides Familiares , Amiloide , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/terapia , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Prealbúmina/genéticaRESUMEN
Taking advantage of their ability to integrate their genomes into the host genome, lentiviruses have been used to rapidly produce transgenic mice in biomedical research. In most cases, transgenes delivered by lentiviral vectors have resisted silencing mediated by epigenetic modifications in mice. However, some studies revealed that methylation caused decreased transgene expression in mice. Therefore, there is conflicting evidence regarding the methylation-induced silencing of transgenes delivered by lentiviral transduction in mice. In this study, we present evidence that the human TTR transgene was silenced by DNA methylation in the liver of a transgenic mouse model generated by lentiviral transduction. The density of methylation on the transgene was increased during reproduction, and the expression of the transgene was completely silenced in mice of the F2 generation. Interestingly, 5-azacytidine (5-AzaC), a methyltransferase inhibitor, potently reactivated the silenced genes in neonatal mice whose hepatocytes were actively proliferating and led to stable transgene expression during development. However, 5-AzaC did not rescue liver transgene expression when administered to adult mice. Moreover, 5-AzaC at the given dose had low developmental toxicity in the newborn mice. In summary, we demonstrate the methylation-induced silencing of an exogenous gene in the liver of a mouse model generated by lentiviral transduction and show that the silenced transgene can be safely and efficiently reactivated by 5-AzaC treatment, providing an alternative way to obtain progeny with stable transgene expression in the case of the methylation of exogenous genes in transgenic mice generated by lentiviral transduction.
Asunto(s)
Metilación de ADN/genética , Lentivirus/genética , Prealbúmina/genética , Transgenes/genética , Animales , Animales Recién Nacidos , Azacitidina/farmacología , Metilación de ADN/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/efectos de los fármacos , Humanos , Lentivirus/efectos de los fármacos , Ratones , Ratones Transgénicos/genéticaRESUMEN
Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.
Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Variación Genética , Errores Innatos del Metabolismo Lipídico/genética , Malonatos/metabolismo , Enzima Bifuncional Peroxisomal/genética , Acil-CoA Deshidrogenasa/genética , Alelos , Frecuencia de los Genes , Genotipo , Células HEK293 , Humanos , Deficiencia Múltiple de Acil Coenzima A DeshidrogenasaRESUMEN
A prognostic 3-miRNA classifier for early-stage mycosis fungoides has been developed recently, with miR-106b providing the strongest prognostic power. The aim of this study was to investigate the molecular function of miR-106b in mycosis fungoides disease progression. The cellular localization of miR-106b in mycosis fungoides skin biopsies was determined by in situ hybridization. The regulatory role of miR-106b was assessed by transient miR-106b inhibitor/mimic transfection of 2 mycosis fungoides derived cell lines, followed by quantitative real-time PCR (RT-qPCR), western blotting and a proliferation assay. MiR-106b was found to be expressed by dermal T-lymphocytes in mycosis fungoides skin lesions, and miR-106b expression increased with advancing mycosis fungoides stage. Transfection of miR-106b in 2 mycosis fungoides derived cell lines showed that miR-106b represses the tumour suppressors cyclin-dependent kinase inhibitor 1 (p21) and thioredoxin-interacting protein (TXNIP) and promotes mycosis fungoides tumour cell proliferation. In conclusion, these results substantiate that miR-106b has both a functional and prognostic role in progression of mycosis fungoides.
Asunto(s)
MicroARNs , Micosis Fungoide , Neoplasias Cutáneas , Proteínas Portadoras , Proliferación Celular , Humanos , MicroARNs/genética , Micosis Fungoide/genética , Pronóstico , Neoplasias Cutáneas/genéticaRESUMEN
Our genes are post-transcriptionally regulated by microRNAs (miRNAs) inducing translational suppression and degradation of targeted mRNAs. Strategies to inhibit miRNAs in a spatiotemporal manner in a desired cell type or tissue, or at a desired developmental stage, can be crucial for understanding miRNA function and for pushing forward miRNA suppression as a feasible rationale for genetic treatment of disease. For such purposes, RNA polymerase II (RNA Pol II)-transcribed tough decoy (TuD) miRNA inhibitors are particularly attractive. Here, we demonstrate augmented miRNA suppression capacity of TuD RNA hairpins linked to the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE). This effect is position-dependent and evident only when the WPRE is positioned upstream of the TuD. In accordance, inclusion of the WPRE does not change nuclear export, translation, total levels of TuD-containing RNA transcripts, or cytoplasmic P-body localization, suggesting that previously reported WPRE functions are negligible for improved TuD function. Notably, deletion analysis of TuD-fused WPRE unveils truncated WPRE variants resulting in optimized miRNA suppression. Together, our findings add to the guidelines for production of WPRE-supported anti-miRNA TuDs.
Asunto(s)
Regulación de la Expresión Génica , MicroARNs/antagonistas & inhibidores , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Elementos Reguladores de la Transcripción , Sitios de Unión , Vectores Genéticos , Células HEK293 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Mensajero/genéticaRESUMEN
Programmable DNA nucleases such as TALENs and CRISPR/Cas9 are emerging as powerful tools for genome editing. Dual-fluorescent surrogate systems have been demonstrated by several studies to recapitulate DNA nuclease activity and enrich for genetically edited cells. In this study, we created a single-strand annealing-directed, dual-fluorescent surrogate reporter system, referred to as C-Check. We opted for the Golden Gate Cloning strategy to simplify C-Check construction. To demonstrate the utility of the C-Check system, we used the C-Check in combination with TALENs or CRISPR/Cas9 in different scenarios of gene editing experiments. First, we disrupted the endogenous pIAPP gene (3.0 % efficiency) by C-Check-validated TALENs in primary porcine fibroblasts (PPFs). Next, we achieved gene-editing efficiencies of 9.0-20.3 and 4.9 % when performing single- and double-gene targeting (MAPT and SORL1), respectively, in PPFs using C-Check-validated CRISPR/Cas9 vectors. Third, fluorescent tagging of endogenous genes (MYH6 and COL2A1, up to 10.0 % frequency) was achieved in human fibroblasts with C-Check-validated CRISPR/Cas9 vectors. We further demonstrated that the C-Check system could be applied to enrich for IGF1R null HEK293T cells and CBX5 null MCF-7 cells with frequencies of nearly 100.0 and 86.9 %, respectively. Most importantly, we further showed that the C-Check system is compatible with multiplexing and for studying CRISPR/Cas9 sgRNA specificity. The C-Check system may serve as an alternative dual-fluorescent surrogate tool for measuring DNA nuclease activity and enrichment of gene-edited cells, and may thereby aid in streamlining programmable DNA nuclease-mediated genome editing and biological research.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Animales , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fibroblastos/citología , Fibroblastos/metabolismo , Fluorescencia , Técnicas de Inactivación de Genes/métodos , Genes Reporteros , Vectores Genéticos/genética , Células HEK293 , Recombinación Homóloga , Humanos , Células MCF-7 , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Porcinos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismoRESUMEN
Myotonic dystrophy type 1 is caused by abnormal expansion of a CTG-trinucleotide repeat in the gene encoding Dystrophia Myotonica Protein Kinase (DMPK), which in turn leads to global deregulation of gene expression in affected individuals. The transcribed mRNA contains a massive CUG-expansion in the 3' untranslated region (3'UTR) facilitating nucleation of several regulatory RNA-binding proteins, which are thus unable to perform their normal cellular function. These CUG-expanded mRNA-protein aggregates form distinct, primarily nuclear foci. In differentiated muscle cells, most of the CUG-expanded RNA remains in the nuclear compartment, while in dividing cells such as fibroblasts a considerable fraction of the mutant RNA reaches the cytoplasm, consistent with findings that both nuclear and cytoplasmic events are mis-regulated in DM1. Recent evidence suggests that the nuclear aggregates, or ribonuclear foci, are more dynamic than previously anticipated and regulated by several proteins, including RNA helicases. In this review, we focus on the homeostasis of DMPK mRNA foci and discuss how their dynamic regulation may affect disease-causing mechanisms in DM1.
Asunto(s)
Distrofia Miotónica/genética , Expansión de las Repeticiones de ADN , Humanos , Distrofia Miotónica/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismoRESUMEN
Myotonic dystrophy type 1 (DM1) is caused by CUG triplet expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) messenger ribonucleic acid (mRNA). The etiology of this multi-systemic disease involves pre-mRNA splicing defects elicited by the ability of the CUG-expanded mRNA to 'sponge' splicing factors of the muscleblind family. Although nuclear aggregation of CUG-containing mRNPs in distinct foci is a hallmark of DM1, the mechanisms of their homeostasis have not been completely elucidated. Here we show that a DEAD-box helicase, DDX6, interacts with CUG triplet-repeat mRNA in primary fibroblasts from DM1 patients and with CUG-RNA in vitro. DDX6 overexpression relieves DM1 mis-splicing, and causes a significant reduction in nuclear DMPK-mRNA foci. Conversely, knockdown of endogenous DDX6 leads to a significant increase in DMPK-mRNA foci count and to increased sequestration of MBNL1 in the nucleus. While the level of CUG-expanded mRNA is unaffected by increased DDX6 expression, the mRNA re-localizes to the cytoplasm and its interaction partner MBNL1 becomes dispersed and also partially re-localized to the cytoplasm. Finally, we show that DDX6 unwinds CUG-repeat duplexes in vitro in an adenosinetriphosphate-dependent manner, suggesting that DDX6 can remodel and release nuclear DMPK messenger ribonucleoprotein foci, leading to normalization of pathogenic alternative splicing events.
Asunto(s)
Regiones no Traducidas 3' , ARN Helicasas DEAD-box/metabolismo , Distrofia Miotónica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Núcleo Celular/química , Células Cultivadas , Citoplasma/química , ARN Helicasas DEAD-box/antagonistas & inhibidores , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Distrofia Miotónica/enzimología , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Empalme del ARN , ARN Mensajero/análisis , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/análisis , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Expansión de Repetición de TrinucleótidoRESUMEN
Neovascular age-related macular degeneration (nAMD) is a frequent cause of vision loss among the elderly in the Western world. Current disease management with repeated injections of anti-VEGF agents accumulates the risk for adverse events and constitutes a burden for society and the individual patient. Sustained suppression of VEGF using gene therapy is an attractive alternative, which we explored using adeno-associated virus (AAV)-based delivery of novel RNA interference (RNAi) effectors in a porcine model of choroidal neovascularization (CNV). The potency of VEGFA-targeting, Ago2-dependent short hairpin RNAs placed in pri-microRNA scaffolds (miR-agshRNA) was established in vitro and in vivo in mice. Subsequently, AAV serotype 8 (AAV2.8) vectors encoding VEGFA-targeting or irrelevant miR-agshRNAs under the control of a tissue-specific promotor were delivered to the porcine retina via subretinal injection before CNV induction by laser. Notably, VEGFA-targeting miR-agshRNAs resulted in a significant and sizable reduction of CNV compared with the non-targeting control. We also demonstrated that single-stranded and self-complementary AAV2.8 vectors efficiently transduce porcine retinal pigment epithelium cells but differ in their transduction characteristics and retinal safety. Collectively, our data demonstrated a robust anti-angiogenic effect of VEGFA-targeting miR-aghsRNAs in a large translational animal model, thereby suggesting AAV-based delivery of anti-VEGFA RNAi therapeutics as a valuable tool for the management of nAMD.
RESUMEN
The year 2023 marks the 25th anniversary of the discovery of RNAi. RNAi-based therapeutics enable sequence-specific gene knockdown by eliminating target RNA molecules through complementary base-pairing. A systematic review of published and ongoing clinical trials was performed. Web of Science, PubMed, and Embase were searched from January 1, 1998, to December 30, 2022 for clinical trials using RNAi. Following inclusion, data from the articles were extracted according to a predefined protocol. A total of 90 trials published in 81 articles were included. In addition, ongoing clinical trials were retrieved from ClinicalTrials.gov, resulting in the inclusion of 48 trials. We investigated how maturation of RNAi-based therapeutics and developments in delivery platforms, administration routes, and potential targets shape the current landscape of clinically applied RNAi. Notably, most contemporary clinical trials used either N-acetylgalactosamine delivery and subcutaneous administration or lipid nanoparticle delivery and intravenous administration. In conclusion, RNAi therapeutics have gained great momentum during the past decade, resulting in five approved therapeutics targeting the liver for treatment of severe diseases, and the trajectory depicted by the ongoing trials emphasizes that even more RNAi-based medicines also targeting extra-hepatic tissues are likely to be available in the years to come.
RESUMEN
Growth hormone (GH) deficiency is characterized by impaired growth and development, and is currently treated by repeated administration of recombinant human GH (hGH). Encapsulated cell therapy (ECT) may offer a less demanding treatment-strategy for long-term production and release of GH into circulation. We used PiggyBac-based (PB) transposon delivery for engineering retinal pigment epithelial cells (ARPE-19), and tested a series of viral and non-viral promoters as well as codon-optimization to enhance transgene expression. Engineered cells were loaded into TheraCyte macrocapsules and secretion was followed in vitro and in vivo. The cytomegalovirus (CMV) promoter supports strong and persistent transgene expression, and we achieved clonal cell lines secreting over 6 µg hGH/106 cells/day. Codon-optimization of the hGH gene did not improve secretion. ARPE-19 cells endured encapsulation in TheraCyte devices, and resulted in steady hormone release for at least 60 days in vitro. A short-term pilot experiment in immunodeficient SCID mice demonstrated low systemic levels of hGH from a single 40 µL capsule implanted subcutaneously. No significant increase in weight increase or systemic hGH was detected after 23 days in the GH-deficient lit/SCID mouse model using 4.5 µL capsules loaded with the highest secreting clone of ARPE-19 cells. Our results demonstrate that PB-mediated engineering of ARPE-19 is an efficient way to generate hormone secreting cell lines compatible with macroencapsulation, and our CMV-driven expression cassette allows for identification of clones with high level and long-term secretory activity without addition of insulator elements. Our results pave the way for further in vivo studies of encapsulated cell therapy.
Asunto(s)
Infecciones por Citomegalovirus , Hormona de Crecimiento Humana , Ratones , Animales , Humanos , Hormona de Crecimiento Humana/genética , Hormona de Crecimiento Humana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Ratones SCID , Línea CelularRESUMEN
Syncytin-1 and envPb1 are two conserved envelope genes in the human genome encoded by single loci from the HERV-W and -Pb families, respectively. To characterize the role of these envelope proteins in cell-cell fusion, we have developed lentiviral vectors that express short hairpin RNAs for stable knockdown of syncytin-1 and envPb1. Analysis of heterotypic fusion activity between trophoblast-derived choriocarcinoma BeWo cells, in which syncytin-1 and envPb1 are specifically silenced, and endothelial cells demonstrated that both syncytin-1 and envPb1 are important to fusion. The ability to fuse cells makes syncytin-1 and envPb1 attractive candidate molecules in therapy against cancer. Our available vectors may help eventually to decipher roles for these genes in human health and/or disease.
Asunto(s)
Coriocarcinoma/metabolismo , Productos del Gen env/metabolismo , Silenciador del Gen , Proteínas Nucleares/metabolismo , Proteínas Gestacionales/metabolismo , Retroviridae/genética , Factores de Transcripción/metabolismo , Fusión Celular , Células Cultivadas , Proteínas de Unión al ADN , Células Endoteliales , Evolución Molecular , Técnicas de Silenciamiento del Gen , Productos del Gen env/genética , Humanos , Proteínas Nucleares/genética , Proteínas Gestacionales/genética , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: Vascular endothelial growth factor (VEGF) is an angiogenic growth factor that plays a critical role in several diseases, including cancer, rheumatoid arthritis and diseases of the eye. Persistent regulation of VEGF by expression of small interfering RNAs targeting VEGF represents a potential future strategy for treatment of such diseases. As a step toward this goal, the present study combines the potency of VEGF-targeted miRNA mimics, produced from a miRNA cluster, with delivery by adeno-associated virus (AAV)-based vectors. METHODS: Nine different engineered tri-cistronic miRNA clusters encoding anti-VEGF effectors were generated and tested in adult human retinal pigment epithelial (ARPE-19) cells using Renilla luciferase screening, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting and immunostaining analysis. In vivo efficacy was tested by the injection of scAAV2/8 vectors expressing the most effective miRNA cluster into murine hindlimb muscles, followed by quantitative RT-PCR. RESULTS: Plasmids containing anti-VEGF miRNA clusters showed efficient silencing of VEGF and demonstrated a combined gene silencing effect for miRNA clusters composed of multiple miRNA-mimicked RNA interference effectors. The most potent molecule, miR-5,10,7, resulted in a knockdown of VEGF by approximately 75%. Injection of scAAV2/8 vectors expressing miR-5,10,7 into murine hindlimb muscles, resulted in a 44% reduction of endogenous VEGF. CONCLUSIONS: We have developed miRNA clusters encoding anti-VEGF effectors and shown, in a mouse model, that VEGF is efficiently down-regulated by scAAV2/8-delivered miRNA clusters, allowing potent attenuation of VEGF. These findings may contribute to the development of gene therapy based on AAV-mediated delivery of miRNA clusters.
Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , MicroARNs/genética , Factor A de Crecimiento Endotelial Vascular , Animales , Dependovirus , Técnicas de Silenciamiento del Gen , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Ratones , Epitelio Pigmentado de la Retina/citología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Purpose: Animal models of choroidal neovascularization (CNV) are extensively used to characterize the pathophysiology of chorioretinal diseases with CNV formation and to evaluate novel treatment strategies. This systematic review aims to give a detailed overview of contemporary animal models of CNV. Methods: A systematic search was performed in PubMed and EMBASE from November 20, 2015, to November 20, 2020, for mammalian animal models of CNV. Following inclusion by two investigators, data from the articles were extracted according to a predefined protocol. Results: A total of 380 full articles, representing 409 independent animal models, were included. Mice were by far the most utilized animal (76%) followed by rats and non-human primates. The median age of rodents was 8 weeks but with a wide range. Male animals were used in 44% of the studies, but 32% did not report the sex. CNV was laser induced in 89% of the studies, but only 44% of these reported sufficiently on standard laser parameters. Surprisingly, 28% of the studies did not report a sample size for quantitative CNV evaluation. Less than half of the studies performed quantitative in vivo evaluation, and 73% evaluated CNV quantitatively ex vivo. Both in vivo and ex vivo evaluations were conducted primarily at day 7 and/or day 14. Conclusions: The laser-induced mouse model is the predominant model for experimental CNV. The widespread use of young, healthy male animals may complicate clinical translation, and inadequate reporting challenges reproducibility. Definition and implementation of standardized methodologic and reporting guidelines are attractive.
Asunto(s)
Neovascularización Coroidal , Animales , Neovascularización Coroidal/tratamiento farmacológico , Modelos Animales de Enfermedad , Angiografía con Fluoresceína/métodos , Coagulación con Láser/efectos adversos , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratas , Reproducibilidad de los ResultadosRESUMEN
Antibody-based immunotherapy targeting the interaction between programmed cell death 1 (PD-1) and its ligand PD-L1 has shown impressive clinical outcomes in various cancer types, including nonsmall cell lung cancer (NSCLC). However, regulatory mechanisms in this immune checkpoint pathway still needs clarification. PD-L2 is structurally homologous to PD-L1 and is a second PD-1 ligand. Alternative mRNA splicing from the CD274 and PDCD1LG2 genes holds the potential to generate PD-L1 and PD-L2 isoforms, respectively, with novel functionality in regulation of the PD-1 immune checkpoint pathway. Here, we describe alternative splicing in NSCLC cells potentially generating eight different PD-L2 isoforms from the PDCD1LG2 gene. Extension of exon 6 by four nucleotides is the most prominent alternative splicing event and results in PD-L2 isoform V with a cytoplasmic domain containing a 10 amino acid extension. On average 13% of the PDCD1LG2 transcripts in NSCLC cell lines and 22% of the transcripts in NSCLC tumor biopsies encode PD-L2 isoform V. PD-L2 isoform V localizes to the cell surface membrane but less efficiently than the canonical PD-L2 isoform I. The cytoplasmic domains of PD-1 ligands can affect immune checkpoint pathways by conferring membrane localization and protein stability and thereby represent alternative targets for immunotherapy. In addition, cytoplasmic domains are involved in intracellular signalling cascades in cancer cells. The presented observations of different cytoplasmic domains of PD-L2 will be important in the future delineation of the PD-1 immune checkpoint pathway.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Empalme Alternativo , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/uso terapéutico , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Citoplasma/metabolismo , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Nucleótidos/metabolismo , Nucleótidos/uso terapéutico , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN MensajeroRESUMEN
Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.
RESUMEN
Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.
Asunto(s)
Terapia Genética , Infecciones por VIH/terapia , VIH/fisiología , MicroARNs/genética , ARN Interferente Pequeño/genética , Receptores CCR5/genética , Línea Celular , VIH/genética , Humanos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Replicación ViralRESUMEN
BACKGROUND: Human bone marrow stromal/stem cells (hMSCs, also known as the skeletal stem cells or mesenchymal stem cells) are being employed to study lineage fate determination to osteoblasts, adipocytes, and chondrocytes. However, mechanistic studies employing hMSC have been hampered by the difficulty of deriving genetically modified cell lines due to the low and unstable transfection efficiency. METHODS: We infected hMSC with a CRISPR/Cas9 lentivirus system, with specific inducible dCas9-coupled transcription activator or repressor: dCas9-KRAB or dCas9-VP64, respectively, and established two hMSC lines (hMSC-CRISPRi and hMSC-CRISPRa) that can inhibit or activate gene expression, respectively. The two cell lines showed similar cell morphology, cell growth kinetics, and similar lineage differentiation potentials as the parental hMSC line. The expression of KRAB-dCas9 or VP64-dCas9 was controlled by the presence or absence of doxycycline (Dox) in the cell culturing medium. To demonstrate the functionality of the dCas9-effector hMSC system, we tested controlled expression of alkaline phosphatase (ALP) gene through transfection with the same single ALP sgRNA. RESULTS: In the presence of Dox, the expression of ALP showed 60-90% inhibition in hMSC-CRISPRi while ALP showed more than 20-fold increased expression in hMSC-CRISPRa. As expected, the ALP was functionally active and the cells showed evidence for inhibition or enhancement of in vitro osteoblast differentiation, respectively. CONCLUSION: hMSC-CRISPRi and hMSC-CRISPRa are useful resources to study genes and genetic pathways regulating lineage-specific differentiation of hMSC.
RESUMEN
BACKGROUND: The etiology of the neurogenerative disease multiple sclerosis (MS) is unknown. The leading hypotheses suggest that MS is the result of exposure of genetically susceptible individuals to certain environmental factor(s). Herpesviruses and human endogenous retroviruses (HERVs) represent potentially important factors in MS development. Herpesviruses can activate HERVs, and HERVs are activated in MS patients. RESULTS: Using flow cytometry, we have analyzed HERV-H Env and HERV-W Env epitope expression on the surface of PBMCs from MS patients with active and stable disease, and from control individuals. We have also analyzed serum antibody levels to the expressed HERV-H and HERV-W Env epitopes. We found a significantly higher expression of HERV-H and HERV-W Env epitopes on B cells and monocytes from patients with active MS compared with patients with stable MS or control individuals. Furthermore, patients with active disease had relatively higher numbers of B cells in the PBMC population, and higher antibody reactivities towards HERV-H Env and HERV-W Env epitopes. The higher antibody reactivities in sera from patients with active MS correlate with the higher levels of HERV-H Env and HERV-W Env expression on B cells and monocytes. We did not find such correlations for stable MS patients or for controls. CONCLUSION: These findings indicate that both HERV-H Env and HERV-W Env are expressed in higher quantities on the surface of B cells and monocytes in patients with active MS, and that the expression of these proteins may be associated with exacerbation of the disease.
Asunto(s)
Linfocitos B/virología , Retrovirus Endógenos/inmunología , Productos del Gen env/inmunología , Monocitos/virología , Esclerosis Múltiple/virología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Células Cultivadas , Epítopos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunologíaRESUMEN
MicroRNAs (miRNAs) have the potential to regulate the expression of thousands of genes, but the mechanisms that determine whether a gene is targeted or not are poorly understood. We studied the genomic distribution of distances between pairs of identical miRNA seeds and found a propensity for moderate distances greater than about 13 nt between seed starts. Experimental data show that optimal down-regulation is obtained when two seed sites are separated by between 13 and 35 nt. By analyzing the distance between seed sites of endogenous miRNAs and transfected small interfering RNAs (siRNAs), we also find that cooperative targeting of sites with a separation in the optimal range can explain some of the siRNA off-target effects that have been reported in the literature.