Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Pharm Dev Technol ; : 1-9, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39166264

RESUMEN

OBJECTIVES: The utilization of pharmaceutical products in pediatric medicine, while established for use in adults, often presents uncertainties due to differences in application for children. The FDA discourages the use of local anesthetic gels, notably lidocaine, for teething pain in pediatrics due to concerns regarding potential adverse effects if inadvertently swallowed excessively. Therefore, significant attention is being directed towards modifying available marketed products to make them suitable for pediatric use. Here, we introduce mucoadhesive patches that not only have an adjusted dose of lidocaine but also feature a controlled release profile to manage teething pain with prolonged effect. This design helps to prevent issues related to gel liquefaction and swallowing, thereby reducing the potential hazardous side effects of lidocaine in the pediatric population. METHODS: The study involved the development of controlled-release lidocaine HCl-loaded pellets forming a matrix for inclusion in mucoadhesive patches. Characterization was performed to ensure prolonged drug release, particularly during overnight use, aiming to improve pediatric patient compliance and enable precise dosing. KEY FINDINGS: The mucoadhesive patches exhibited sustained lidocaine release lasting 24 h, potentially offering overnight relief suitable for pediatric application. The analysis of lidocaine content revealed that the developed patches maintained stable levels compared to doses obtained from commercially available oral gels. This finding implies effective pain control without the need for frequent reapplications, alongside controlled doses that decrease the likelihood of side effects. CONCLUSION: The formulated medicated patches demonstrated consistent lidocaine content, effectively controlled drug release, and consequently, reduced the likelihood of undesired side effects when compared to oral gel administration.

2.
Inflammopharmacology ; 31(3): 1341-1359, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37010718

RESUMEN

Diosmin is a flavonoid with promising anti-inflammatory and antioxidant properties. However, it has difficult physicochemical characteristics since its solubility demands a pH level of 12, which has an impact on the drug's bioavailability. The aim of this work is the development and characterization of diosmin nanocrystals using anti-solvent precipitation technique to be used for topical treatment of psoriasis. Results revealed that diosmin nanocrystals stabilized with hydroxypropyl methylcellulose (HPMC E15) in ratio (diosmin:polymer; 1:1) reached the desired particle size (276.9 ± 16.49 nm); provided promising colloidal properties and possessed high drug release profile. Additionally, in-vivo assessment was carried out to evaluate and compare the activities of diosmin nanocrystal gel using three different doses and diosmin powder gel in alleviating imiquimod-induced psoriasis in rats and investigating their possible anti-inflammatory mechanisms. Herein, 125 mg of 5% imiquimod cream (IMQ) was applied topically for 5 consecutive days on the shaved backs of rats to induce psoriasis. Diosmin nanocrystal gel especially in the highest dose used offered the best anti-inflammatory effect. This was confirmed by causing the most statistically significant reduction in the psoriasis area severity index (PASI) score and the serum inflammatory cytokines levels. Furthermore, it was capable of maintaining the balance between T helper (Th17) and T regulatory (Treg) cells. Moreover, it tackled TLR7/8/NF-κB, miRNA-31, AKT/mTOR/P70S6K and elevated the TNFAIP3/A20 (a negative regulator of NF-κB) expression in psoriatic skin tissues. This highlights the role of diosmin nanocrystal gel in tackling imiquimod-induced psoriasis in rats, and thus it could be a novel promising therapy for psoriasis.


Asunto(s)
Diosmina , MicroARNs , Nanopartículas , Psoriasis , Ratas , Animales , Ratones , FN-kappa B/metabolismo , Imiquimod/efectos adversos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/uso terapéutico , Diosmina/efectos adversos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/uso terapéutico , Transducción de Señal , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Piel , Serina-Treonina Quinasas TOR/metabolismo , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
3.
AAPS PharmSciTech ; 22(7): 246, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34617166

RESUMEN

Andrographolide (AG) is an antitumor phytochemical that acts against non-Hodgkin's lymphoma. However, AG shows low oral bioavailability due to extensive first-pass metabolism and P-glycoprotein efflux. Novel biocompatible lipoprotein-simulating nanosystems, emulsomes (EMLs), have gained significant attention due to their composition of natural components, in addition to being lymphotropic. Loading AG on EMLs is believed to mitigate the disadvantage of AG and enhance its lymphatic transport. This study developed a chylomicron-simulating system (EMLs) as a novel tool to overcome the AG oral delivery obstacles. Optimized EML-AG had a promising vesicular size of 281.62 ± 1.73 nm, a zeta potential of - 22.73 ± 0.06 mV, and a high entrapment efficiency of 96.55% ± 0.25%, which favors lymphatic targeting. In vivo pharmacokinetic studies of EML-AG showed significant enhancement (> sixfold increase) in the rate and extent of AG absorption compared with free AG. However, intraperitoneal injection of a cycloheximide inhibitor caused a significant decrease in AG absorption (~ 52%), confirming the lymphatic targeting potential of EMLs. Therefore, EMLs can be a promising novel nanoplatform for circumventing AG oral delivery obstacles and provide targeted delivery to the lymphatic system at a lower dose with fewer side effects.


Asunto(s)
Diterpenos , Administración Oral , Disponibilidad Biológica , Fitoquímicos
4.
AAPS PharmSciTech ; 21(8): 310, 2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33164131

RESUMEN

Palmar plantar erythrodysesthesia (PPE) is a commonly reported skin toxicity of chemotherapeutic agents that significantly affects patients' quality of life. PPE is described as inflammation, swelling, and even cracks and ulcers in the skin of palms and soles of the feet. Conventional treatment includes topical creams, analgesics, or corticosteroids. However, serious cases are not responding to these medications. PPE has been reported to cause drug cessation or dose reduction if not properly treated. Sildenafil citrate (SC) has a well-documented activity in wound healing through improving blood supply to the affected area. However, SC has poor physicochemical properties limiting its transdermal permeation and deposition. This research endeavored to elaborate novel vesicular system with natural components, phospholipids and oleic acid, loaded with sildenafil citrate for topical management of PPE. Sildenafil-loaded oleosomes were prepared using modified ethanol injection method. Optimized oleosomes had nanometric particle size (157.6 nm), negative zeta potential (- 85.2 mv), and high entrapment efficiency (95.56%). Ex vivo studies on human skin revealed that oleosomes displayed 2.3-folds higher permeation and 4.5-folds more deposition through the human skin compared to drug suspension. Results endorsed SC oleosomes as suitable topical treatment of PPE providing ameliorated sildenafil permeability in addition to acting as a reservoir for gradual release of the drug. Graphical abstract.


Asunto(s)
Antineoplásicos/efectos adversos , Gotas Lipídicas , Parestesia/tratamiento farmacológico , Citrato de Sildenafil/química , Enfermedades de la Piel/tratamiento farmacológico , Administración Tópica , Humanos , Parestesia/inducido químicamente , Parestesia/complicaciones , Tamaño de la Partícula , Calidad de Vida , Citrato de Sildenafil/administración & dosificación , Citrato de Sildenafil/uso terapéutico , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/complicaciones
5.
Drug Dev Ind Pharm ; 45(7): 1140-1148, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30912678

RESUMEN

The objective of this study was to improve candesartan cilexetil (CC) efficacy by formulating nanocrystals via solid dispersion (SD) technique using tromethamine (Tris). SD was prepared by solvent evaporation at different drug carrier ratios, evaluated for particle size, vitro dissolution studies, TEM, FTIR, and X-ray powder diffraction. Ex vivo, in vivo pharmacokinetic parameters were conducted on selected formulae compared to drug suspension and marketed product. Size analysis demonstrated formation of particles in the nanorange lower than 300 nm. A burst drug release followed by an improved dissolution was observed indicating instant formation of nanocrystals along with amorphization as confirmed by X-ray diffraction. FTIR studies suggested the absence of chemical interaction between Tris and CC. TEM revealed formation of irregular oval nanoparticles. SD-1:5 has higher apparent permeability coefficient compared to CC suspension. Furthermore, the pharmacokinetic results proved the ability of the formed nanoparticles to enhance the efficacy of CC compared to drug suspension and marketed product. In conclusion, using of Tris as alkaline esterase activator carrier could be a promising tool to bypass the controversial effect of esterase enzymes that may be a source for inter-individual variations affecting ester prodrug candidates' efficacy.


Asunto(s)
Bencimidazoles/química , Compuestos de Bifenilo/química , Portadores de Fármacos/química , Nanopartículas/química , Elastasa Pancreática/química , Tetrazoles/química , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría/métodos , Liberación de Fármacos/efectos de los fármacos , Tamaño de la Partícula , Permeabilidad/efectos de los fármacos , Profármacos/química , Solubilidad/efectos de los fármacos , Suspensiones/química , Difracción de Rayos X/métodos
6.
Pharm Res ; 35(1): 18, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305670

RESUMEN

PURPOSE: To develop novel bioactive-chylomicrons to solve oral delivery obstacles of Berberine chloride and target the lymphatic system. METHODS: Berberine-loaded bioactive-chylomicrons were prepared and underwent full in vitro characterization. Intestinal permeability was appraised via both non-everted gut sac model and Caco-2 cell model. Furthermore, Bioactive-chylomicrons' cellular uptake and distribution were examined by laser scanning confocal microscopy. Finally, a novel chylomicron flow-blockage assay on tissue and cellular levels were elaborated to assess the lymphatic targeting ability. RESULTS: Berberine-loaded chylomicrons showed spherical vesicles of size (175.6 nm), PDI (0.229), zeta potential (-16 .6 mV) and entrapment efficiency (95.5%). Ex-vivo intestinal permeability studies demonstrated 10.5 fold enhancement in permeability of Berberine-loaded chylomicrons over free Berberine. Moreover, Caco-2 studies revealed significant improvement in chylomicrons' permeability and cellular uptake. Furthermore, confocal microscopy analyses revealed 2 fold increase in berberine-loaded chylomicrons' intracellular fluorescence. Lymphatic targeting models were successfully elaborated using cycloheximide protein synthesis inhibitor. Such models demonstrated 47 and 27.5% reduction in ex-vivo and Caco-2 permeability respectively. Finally, a good rank order correlation was established between different permeability assessment techniques. CONCLUSION: The findings shed the light on the underlying mechanisms of Berberine bioavailability improvement. Consequently, berberine-loaded chylomicrons could be considered as promising bioactive-nanocarriers for Berberine lymphatic targeting and bioavailability improvement.


Asunto(s)
Berberina/administración & dosificación , Berberina/química , Quilomicrones/química , Sistema Linfático/efectos de los fármacos , Administración Oral , Animales , Berberina/uso terapéutico , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Supervivencia Celular , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Absorción Intestinal/fisiología , Masculino , Imagen Óptica/métodos , Tamaño de la Partícula , Permeabilidad , Ratas Sprague-Dawley , Propiedades de Superficie
7.
AAPS PharmSciTech ; 19(2): 661-667, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28948575

RESUMEN

The aim of the present work is to answer the question is it possible to replace the ester prodrug candesartan cilexetil (CC) by its active metabolite candesartan (C) to bypass the in vivo variable effect of esterase enzymes. A comparative physicochemical evaluation was conducted through solubility, dissolution, and stability studies; additionally, ex vivo permeation and in vivo studies were assessed. C demonstrated higher solubility over CC at alkaline pH. Moreover, dissolution testing using the pharmacopeial method showed better release profile of C even in the absence of surfactant in the testing medium. Both drugs demonstrated a slight degradation in acidic pH after short-term stability. Instead, shifting to alkaline pH of 6.5 and 7.4 showed superiority of C solution stability compared to CC solution. The ex vivo permeation results demonstrated that the parent compound C has a significant (P < 0.05) enhanced permeation compared to its prodrug from CC, that agreed with in vivo results in which C suspension reached significantly (P < 0.05) higher C max of 1.39 ± 0.59 µg/mL at T max of 0.66 ± 0.11 h, while CC suspension reached C max of 0.47 ± 0.22 µg/mL at T max of 2.00 ± 0.27 h, a lag period of 40 min is needed prior to detection of any absorbed CC in plasma. Those findings are not in agreement with the previously reported rationale on the prodrug formation owing to the poor permeability of the parent compound, suggesting the possibility of marketing the parent drug candesartan for clinical use similarly to azilsartan and its prodrug.


Asunto(s)
Antihipertensivos/química , Bencimidazoles/química , Compuestos de Bifenilo/química , Profármacos/química , Tetrazoles/química , Animales , Antihipertensivos/metabolismo , Bencimidazoles/metabolismo , Compuestos de Bifenilo/metabolismo , Fenómenos Químicos , Evaluación Preclínica de Medicamentos/métodos , Masculino , Permeabilidad , Profármacos/metabolismo , Ratas , Solubilidad , Tetrazoles/metabolismo
8.
AAPS PharmSciTech ; 19(8): 3698-3711, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30238305

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that has no cure till now. Piperine (PIP) is an alkaloid characterized by memory-enhancing properties but challenging oral delivery obstacles. The objectives of this study are as follows: preparation of microemulsion (ME) as a proposed oral PIP nanocarrier for treatment of Alzheimer's disease and testing its safety on the brain and other internal organs. This study employs bioactive surfactants in the common safe doses to improve PIP targeting to the brain. Selected ME systems encompassed Caproyl 90 (oil)/Tween 80/Cremophor RH 40 (surfactant) and Transcutol HP (co-surfactant). The particle size of the prepared formulations was less than 150 nm with negative zeta potential. The in vivo results showed a superior effect of ME over free PIP. Colchicine-induced brain toxicity results showed the safety of ME on brain cells. Nevertheless, toxicological results showed a potential ME nephrotoxicity. Oral microemulsion increased PIP efficacy and enhanced its delivery to the brain resulting in better therapeutic outcome compared to the free drug. However, the toxicity of this nanosystem should be carefully taken into consideration on chronic use.


Asunto(s)
Alcaloides/química , Enfermedad de Alzheimer/tratamiento farmacológico , Benzodioxoles/química , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Piperidinas/química , Alcamidas Poliinsaturadas/química , Administración Oral , Alcaloides/administración & dosificación , Enfermedad de Alzheimer/metabolismo , Animales , Benzodioxoles/administración & dosificación , Emulsiones , Humanos , Piperidinas/administración & dosificación , Alcamidas Poliinsaturadas/administración & dosificación , Ratas Wistar
9.
Pharm Res ; 32(9): 2901-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25777613

RESUMEN

PURPOSE: Hyaluronic acid (HA) is an imperative biomaterial with desirable rheological properties to alleviate symptoms of osteoarthritis. Nevertheless, scantly percutaeous permeation of this macromolecule handicaps its effective use for orthopedics and triggers intra-articular injection as the only surrogate. This study presents novel self-assembeld HA-based gel core elastic nanovesicles, (hyaluosomes; GC-HS), for non-invasive transdermal delivery of HA. METHODS: GC-HS were prepared with 1% HA using simple film hydration technique. Their size, zeta potential, percentage entrapment efficiency (% EE), elasticity, and ex-vivo transdermal permeation were evaluated compared to conventional liposomes CL. Structure elucidation of the formed novel system was performed using light, polarizing and transmission electron microscopy. In-vivo permeation of GC-HS through knee joints of female Sprague Dawley rats was compared to CL and HA alone. RESULTS: GC-HS showed nanosize (232.8 ± 7.2), high negative zeta potential (-45.1 ± 8.3) and higher elasticity (size alteration 5.43%) compared to CL. This novel system has self-penetration enhancing properties compared to CL and plain gel. GC-HS showed self-assembled properties and high physically stable for at least 6 months at 4°C. Ex-vivo permeation of HS was significantly higher than CL and plain HA gel alone. In-vivo study exhibited significant six folds increase in transdermal permeation of HA to knee joints from GC-HS compared to plain HA gel. CONCLUSION: Novel GC-HS are promising nanogels for topical management of osteoarthritis surrogating the need for intra-articular injection.


Asunto(s)
Geles/administración & dosificación , Geles/química , Ácido Hialurónico/administración & dosificación , Ácido Hialurónico/química , Liposomas/administración & dosificación , Liposomas/química , Osteoartritis/tratamiento farmacológico , Administración Cutánea , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Elasticidad , Femenino , Inyecciones Intraarticulares/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Tamaño de la Partícula , Permeabilidad , Ratas , Ratas Sprague-Dawley , Absorción Cutánea
10.
J Liposome Res ; 24(3): 204-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24484536

RESUMEN

Niosomes embodying ethanol and minimum amount of cholesterol (ethoniosomes) could be promising ocular delivery systems for water soluble and insoluble drugs. This manuscript reports on novel nano-sized elastic niosomes (ethoniosomes) composed of Span 60: cholesterol (7:3 mol/mol) and ethanol, for ocular delivery of prednisolone acetate (Pred A) and prednisolone sodium phosphate (Pred P). These ethoniosomes were prepared with the thin film hydration (TFH) and ethanol injection (EI) methods, characterized for percentage entrapment efficiency (% EE), size, zeta potential, morphology, elasticity, in vitro release and physical stability. Ocular irritation, bioavailability and anti-inflammatory effects were evaluated and compared with the conventional suspension and solution eye drops. The prepared ethoniosomal vesicles (EV) had a Z-average diameter of 267 nm, zeta potential of approximately -40 mV and % change in size after extrusion of 4%. They were physically stable for at least 2 months at 4 °C. The prepared EV showed good ocular tolerability using the modified Draize's test and the estimated relative ocular bioavailability for Pred A EV and Pred P EV was 1.54 and 1.75 times greater than that for the suspension and solution eye drops, respectively. The time required for complete healing from the clove oil-induced severe ocular inflammation was reduced to half with Pred A and Pred P EV. More interestingly, the intraocular pressure (IOP) elevation side effect recorded for Pred A and Pred P EV was significantly less than that for the conventional suspension and solution eye drops.


Asunto(s)
Antiinflamatorios/administración & dosificación , Endoftalmitis/tratamiento farmacológico , Liposomas/síntesis química , Prednisolona/análogos & derivados , Animales , Disponibilidad Biológica , Química Farmacéutica , Aceite de Clavo , Composición de Medicamentos , Estabilidad de Medicamentos , Elasticidad , Endoftalmitis/inducido químicamente , Etanol/química , Tamaño de la Partícula , Prednisolona/administración & dosificación , Conejos
11.
Int J Biol Macromol ; 254(Pt 3): 127930, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944733

RESUMEN

A chitosan-coated luteolin-loaded phytocubosomal system was prepared to improve the pharmacodynamic performance of luteolin in the treatment of glaucoma and ocular inflammation after topical ocular administration. Luteolin, a potent anti-oxidant herbal drug with poor aqueous solubility, was complexed with phospholipid. The prepared phytocubosomes were coated with chitosan, producing homogenously distributed nanosized particles (258 ± 9.05 nm) with a positive charge (+49 ± 6.09 mV), improved EE% (96 %), and increased concentration of encapsulated drug to 288 µg/ml. Polarized light microscopy revealed a cubic phase. Chitosan-coated phytocubosomes showed a sustained drug release profile (38 % over 24 h) and improved anti-oxidant activity (IC50 of 32 µg/ml). Ex vivo transcorneal permeation was higher by 3.60 folds compared to luteolin suspension. Irritancy tests confirmed their safety in ocular tissues after single and multiple administrations. The pharmacodynamic studies on glaucomatous rabbit eyes demonstrated 6.46-, 3.88-, and 1.89-fold reductions in IOP of chitosan-coated phytocubosomes compared to luteolin suspension, cubosomes, and phytocubosomes, respectively. Pharmacodynamic anti-inflammatory studies revealed faster recovery capabilities of chitosan-coated phytocubosomes over other formulations. Thus, chitosan-coated phytocubosomes could be a promising ocular hybrid system for delivering herbal lipophilic drugs such as luteolin.


Asunto(s)
Quitosano , Glaucoma , Nanopartículas , Animales , Conejos , Quitosano/uso terapéutico , Luteolina/farmacología , Antioxidantes/uso terapéutico , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Glaucoma/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
12.
Int J Biol Macromol ; 277(Pt 1): 134144, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053824

RESUMEN

Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 µM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.


Asunto(s)
Quitosano , Clobetasol , Cuprizona , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Lactoferrina , Esclerosis Múltiple , Remielinización , Animales , Lactoferrina/química , Lactoferrina/farmacología , Quitosano/química , Ratones , Clobetasol/farmacología , Clobetasol/química , Remielinización/efectos de los fármacos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inducido químicamente , Liposomas/química , Ratones Endogámicos C57BL , Masculino , Tamaño de la Partícula , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Liberación de Fármacos
13.
Colloids Surf B Biointerfaces ; 245: 114271, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39353349

RESUMEN

Cerium oxide nanoparticles are a unique antioxidant mimicking the activity of natural antioxidant enzymes. Previous research showed its' promising effect mitigating free radical damage in neurodegenerative disorders. However, there is still unmet therapeutic needs due to poor BBB penetration, a high accumulation in liver, kidney and spleen. This study aimed to synthesize and optimize nanoceria stabilized by natural bioactive polymers suitable for intranasal administration to manage multiple sclerosis. Among the different employed biopolymers, pectin-stabilized nanoceria exhibited the ideal properties with small particles size 87.20 ±â€¯3.43 nm, high zeta potential -56.37 ±â€¯2.39 mV and high free radical scavenging activity 85.27 ±â€¯0.07 %. Then coating was achieved for the first time by two biopolymers: lactoferrin and chitosan producing a double coated cationic nanoceria. Biological assessment involved using experimental autoimmune encephalomyelitis animal model treated in a dose of 1 mg/kg nanoceria for 15 days. Motor function testing in rats revealed 6- and 17-folds increase in latency time in rotating rod and hanging wire tests, respectively. Biochemical analysis revealed significant reduction in lipid peroxidation along with about 1-fold upgrading of the intrinsic antioxidant system. Moreover, histologic examination disclosed decreased degeneration of the brain and spinal cord of treated rats and much decreased liver toxicity.

14.
Biomater Adv ; 162: 213924, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38875802

RESUMEN

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.


Asunto(s)
Alendronato , Portadores de Fármacos , Ivermectina , Lactoferrina , Humanos , Animales , Portadores de Fármacos/química , Lactoferrina/química , Lactoferrina/farmacología , Lactoferrina/administración & dosificación , Alendronato/química , Alendronato/farmacología , Alendronato/administración & dosificación , Ivermectina/química , Ivermectina/análogos & derivados , Ivermectina/farmacología , Ivermectina/administración & dosificación , Ivermectina/farmacocinética , Células K562 , Nanopartículas/química , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Huesos/efectos de los fármacos , Huesos/metabolismo , Lípidos/química , Apoptosis/efectos de los fármacos
15.
Int J Pharm ; 656: 124086, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580074

RESUMEN

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Asunto(s)
Portadores de Fármacos , Ivermectina , Lípidos , Nanoestructuras , Humanos , Ivermectina/administración & dosificación , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/farmacología , Animales , Portadores de Fármacos/química , Lípidos/química , Células K562 , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Sinergismo Farmacológico , Liberación de Fármacos , Supervivencia Celular/efectos de los fármacos , Masculino , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Limoninas/administración & dosificación , Limoninas/farmacología , Limoninas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Ratas
16.
Int J Pharm ; 649: 123663, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061501

RESUMEN

Invasive pulmonary aspergillosis (IPA) is the most devastating Aspergillus-related lung disease. Voriconazole (VRZ) is the first-line treatment against IPA. Despite availability in oral and parenteral dosage forms, risks of systemic toxicity dictate alternative pulmonary administration. Inspired by natural lung surfactants, dipalmitoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DPPC/DMPG) surface-modified lipid nanoparticles (LNPs) were scrutinized for pulmonary administration. DPPC/DMPG-VRZ-LNPs prepared using ultrasonication/thin film hydration were investigated for colloidal properties over 3-month shelf storage. They were stable with a slight change in entrapment efficiency. They provided a sustained VRZ release over 24 h, with a rapid initial release. In vitro aerosolization indicated higher percentages of VRZ deposited on stages corresponding to secondary bronchi and alveolar ducts. Moreover, intrapulmonary administration maintained high lung VRZ concentration (27 ± 1.14 µg/g) after 6 h. A preclinical study using a cyclophosphamide-induced neutropenic rat model demonstrated a 3-fold reduction in BALF-Galactomannan down to 0.515 ± 0.22 µg/L confirming DPPC/DMPG-VRZ-LNPs potential in hyphal growth inhibition. Histopathological examination of infected/nontreated lung sections exhibited dense fungal load inside alveoli and blood vessels indicating massive tissue and angio-invasiveness. Nevertheless, DPPC/DMPG-VRZ-LNPs-treated animals displayed minimal hyphae with no signs of invasiveness. The developed bioinspired nanoparticles serve as prospective bioactive nanocarrier candidates for pulmonary administration of VRZ in the management of IPA.


Asunto(s)
Aspergilosis Pulmonar Invasiva , Nanopartículas , Ratas , Animales , Voriconazol , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/microbiología , Aspergilosis Pulmonar Invasiva/patología , 1,2-Dipalmitoilfosfatidilcolina , Estudios Prospectivos , Antifúngicos
17.
Drug Deliv Transl Res ; 14(2): 433-454, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37644299

RESUMEN

Fisetin (FIS) is a multifunctional bioactive flavanol that has been recently exploited as anticancer drug against various cancers including breast cancer. However, its poor aqueous solubility has constrained its clinical application. In the current work, fisetin is complexed for the first time with soy phosphatidylcholine in the presence of cholesterol to form a novel biocompatible phytosomal system entitled "cholephytosomes." To improve fisetin antitumor activity against breast cancer, stearylamine bearing cationic cholephytosomes (mPHY) were prepared and furtherly modified with hyaluronic acid (HPHY) to allow their orientation to cancer cells through their surface exposed phosphatidylserine and CD-44 receptors, respectively. In vitro characterization studies revealed promising physicochemical properties of both modified vesicles (mPHY and HPHY) including excellent FIS complexation efficiency (Ë·100%), improved octanol/water solubility along with a sustained drug release over 24 h. In vitro cell line studies against MDA-MB-231 cell line showed about 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free drug and conventional drug-phospholipid complex, respectively. Preclinical studies revealed that both modified cholephytosomes (mPHY and HPHY) had comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-ß1and its non-canonical related signaling pathway; ERK1/2, NF-κB, and MMP-9 were involved in halting tumorigenesis. Thus, tailoring novel phytosomal nanosystems for FIS could open opportunity for its clinical utility against cancer.


Asunto(s)
Neoplasias de la Mama , Flavonoides , Humanos , Femenino , Flavonoides/farmacología , Flavonoides/química , Neoplasias de la Mama/tratamiento farmacológico , Flavonoles , Polietilenglicoles , Línea Celular Tumoral
18.
Int J Pharm X ; 7: 100236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38524143

RESUMEN

Caffeine (CAF) is a non-selective adenosine A1 receptor antagonist which predominates in fat cells. When CAF binds to adenosine receptors, it increases cyclic adenosine monophosphate; inhibiting adipogenesis and inducing fat lipolysis. Resveratrol (RSV) is an antioxidant polyphenol possessing different anti-obesity mechanisms. Topical application of both hydrophilic CAF and lipophilic RSV is limited. This study aimed to develop novel caffeinated-resveratrol bilosomes (CRB) and caffeine-bilosomes (CB) that could non-invasively target and deposit in fat cells. RSV bilosomes (RB) were prepared as a non-targeted system for comparison. CRB showed nanosize (364.1 nm ±6.5 nm) and high entrapment for both active compounds. Rats treated topically with CRB revealed a significant decrease (P = 0.039) in body weight. Histological analysis of the excised skin demonstrated a reduction in the subcutaneous fatty layer thickness and a decrease in the size of connective tissue-imbedded fat cells. Kidney histological examination of RB-treated rats showed subcapsular tubular epithelial cells with cytoplasmic vacuolation. This reflects a systemic effect of RSV from the non-targeted RB compared to CRB, which had a targeting effect on the adipose tissue. In conclusion, CAF in CRB significantly enhanced RSV deposition in adipose tissue and assisted its local-acting effect for managing obesity and cellulite.

19.
Int J Pharm ; 655: 124000, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38493840

RESUMEN

Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.


Asunto(s)
Carcinoma de Ehrlich , Carnosina , Neoplasias , Ratones , Animales , Femenino , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/metabolismo , Factor A de Crecimiento Endotelial Vascular , Ratones Endogámicos BALB C , Lípidos , Fenómenos Magnéticos
20.
Int J Pharm ; 646: 123482, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802260

RESUMEN

Ophthalmic delivery of luteolin (LU) was studied after formulating a carrageenan-based novel ion-sensitive in situ gel (ISG) incorporating oleophytocubosomes for prolonged ocular residence time and improved ocular bioavailability of the poorly absorbed herbal drug luteolin. The prepared oleophytocubosomes and ISG were compared with LU suspension. Optimized oleophytocubosomes possessed small, homogenously distributed negatively charged particles with high entrapment efficiency. Polarized light microscope revealed a cubic phase. Optimized ISG matrix composed of 0.4% kappa carrageenan (KC), and 2% hydroxypropylmethylcellulose (HPMC) demonstrated rapid gelation, high resistance to dilution, increased viscosity after gelation, and strong mucoadhesive properties. oleophytocubosomes exerted improved drug release, while a more sustained release was observed for ISG oleophytocubosomes. The antioxidant activity of both formulations was significantly higher than that of LU suspension. Oleophytocubosome and ISG oleophytocubosome revealed significantly higher apparent permeability coefficients of 3.62 and 2.90 folds, respectively, compared to LU suspension. Irritation tests showed the safety of both formulations for single- and multiple-ocular administration. In-vivo studies demonstrated that the ISG system showed prolonged antiglaucoma effects and a faster anti-inflammatory effect, followed by oleophytocubosomes.


Asunto(s)
Sistemas de Liberación de Medicamentos , Luteolina , Carragenina , Nanogeles , Geles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA