Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Dairy Sci ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762109

RESUMEN

Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variant (CNVs) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 copy number variant regions (CNVRs), with 1,993 shared CNVRs being found within the studied buffalo types. Analyzing CNVRs highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVRs that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci (eQTL) analysis revealed differential expression of CNVR-driven genes (DECGs) associated with milk production traits. Notably, known milk production-related genes were among these DECGs, validating their relevance. Last, a genome-wide association study (GWAS) identified 3 CNVRs significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.

2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473873

RESUMEN

Identifying key causal genes is critical for unraveling the genetic basis of complex economic traits, yet it remains a formidable challenge. The advent of large-scale sequencing data and computational algorithms, such as transcriptome-wide association studies (TWASs), offers a promising avenue for identifying potential causal genes. In this study, we harnessed the power of TWAS to identify genes potentially responsible for milk production traits, including daily milk yield (MY), fat percentage (FP), and protein percentage (PP), within a cohort of 100 buffaloes. Our approach began by generating the genotype and expression profiles for these 100 buffaloes through whole-genome resequencing and RNA sequencing, respectively. Through comprehensive genome-wide association studies (GWAS), we pinpointed a total of seven and four single nucleotide polymorphisms (SNPs) significantly associated with MY and FP traits, respectively. By using TWAS, we identified 55, 71, and 101 genes as significant signals for MY, FP, and PP traits, respectively. To delve deeper, we conducted protein-protein interaction (PPI) analysis, revealing the categorization of these genes into distinct PPI networks. Interestingly, several TWAS-identified genes within the PPI network played a vital role in milk performance. These findings open new avenues for identifying potentially causal genes underlying important traits, thereby offering invaluable insights for genomics and breeding in buffalo populations.


Asunto(s)
Búfalos , Leche , Humanos , Animales , Leche/metabolismo , Estudio de Asociación del Genoma Completo , Transcriptoma , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
3.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35743005

RESUMEN

Acylglycerophosphate acyltransferases (AGPATs) are the rate-limiting enzymes for the de novo pathway of triacylglycerols (TAG) synthesis. Although AGPATs have been extensively explored by evolution, expression and functional studies, little is known on functional characterization of how many members of the AGPAT family are involved in TAG synthesis and their impact on the cell proliferation and apoptosis. Here, 13 AGPAT genes in buffalo were identified, of which 12 AGPAT gene pairs were orthologous between buffalo and cattle. Comparative transcriptomic analysis and real-time quantitative reverse transcription PCR (qRT-PCR) further showed that both AGPAT1 and AGPAT6 were highly expressed in milk samples of buffalo and cattle during lactation. Knockdown of AGPAT1 or AGPAT6 significantly decreased the TAG content of buffalo mammary epithelial cells (BuMECs) and bovine mammary epithelial cells (BoMECs) by regulating lipogenic gene expression (p < 0.05). Knockdown of AGPAT1 or AGPAT6 inhibited proliferation and apoptosis of BuMECs through the expression of marker genes associated with the proliferation and apoptosis (p < 0.05). Our data confirmed that both AGPAT1 and AGPAT6 could regulate TAG synthesis and growth of mammary epithelial cells in buffalo. These findings will have important implications for understanding the role of the AGPAT gene in buffalo milk performance.


Asunto(s)
Aciltransferasas , Búfalos , Animales , Bovinos , Femenino , Aciltransferasas/genética , Aciltransferasas/metabolismo , Búfalos/genética , Búfalos/metabolismo , Células Epiteliales/metabolismo , Lactancia/genética , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Triglicéridos/metabolismo
4.
J Dairy Res ; 87(4): 389-396, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33185171

RESUMEN

The objectives of the current study were to detect putative genomic loci and to identify candidate genes associated with milk production traits in Egyptian buffalo. A total number of 161 479 daily milk yield (DMY) records and 60 318 monthly measures for fat and protein percentages (FP and PP, respectively), along with fat and protein yields (FY and PY, respectively) from 1670 animals were used. Genotyping was performed using Axiom® Buffalo Genotyping 90 K array. Genome-wide association study (GWAS) for each trait was performed using PLINK. After Bonferroni correction, 47 SNPs were associated with one or more milk production traits. These SNPs were distributed over 36 quantitative trait loci (QTL) and located on 20 buffalo chromosomes (BBU). For the 47 SNPs, one was overlapped for three traits (DMY, FY, and PY), six were associated with two traits (one for PP and PY and five for FY and PY) while the rest were associated with only one trait. Out of 36 identified QTL, eleven were overlapped with previously reported loci in buffalo and/or cattle populations. Some of these SNPs are placed within or close to potential candidate genes, for example: TPD52, ZBTB10, RALYL and SNX16 on BBU15, ADGRD1 on BBU17, ESRRG on BBU5 and GRIP1 on BBU4. This is the first reported study between genome-wide markers and milk components in Egyptian buffalo. Our findings provide useful information to explore the genetic mechanisms and relevant genes contributing to the variation in milk production traits. Further confirmation studies with larger population size are necessary to validate the findings and detect the causal genetic variants.


Asunto(s)
Búfalos/genética , Búfalos/fisiología , Lactancia/genética , Leche/fisiología , Animales , Femenino , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Lactancia/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
5.
Genet Sel Evol ; 46: 35, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24898131

RESUMEN

BACKGROUND: To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks. RESULTS: When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL. CONCLUSIONS: The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions.


Asunto(s)
Bovinos/clasificación , Bovinos/genética , Estudios de Asociación Genética/veterinaria , Haplotipos , Polimorfismo de Nucleótido Simple , Animales , Mapeo Cromosómico/veterinaria , Cromosomas/genética , Genómica , Genotipo , Masculino , Fenotipo , Sitios de Carácter Cuantitativo
6.
J Dairy Sci ; 97(4): 2481-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24485673

RESUMEN

Recently, we identified 6 genomic loci affecting daughter yield deviations (DYD) for somatic cell score (SCS) in a genome-wide association study (GWAS) performed with German Holstein bulls. In the current study, we tested if these loci were associated with SCS in cows using their own performance data. The study was performed with 1,412 German Holstein cows, of which 483 were daughters of 71 bulls that had been used in the GWAS. We tested 10 single nucleotide polymorphisms (SNP) representing 6 genomic regions that were associated with DYD for SCS in bulls. All tested SNP were significant in cows. Seven of them, located on Bos taurus autosomes (BTA) 6, 13, and 19, had the same direction of effect as those previously reported in the bull population. The most significant associations were detected on BTA6 and BTA19, accounting for 1.8% of the total genetic variance. The major allele of the 2 SNP on BTA6 and the minor allele of the 2 SNP on BTA19 were favorable for lower SCS. The differences between the homozygous genotype classes were up to 15,000 cells/mL. The verification of SNP associated with SCS in this study provides further evidence for the functional role of the linked genomic regions for immune response and contributes to identification of causative mutations. In particular, SNP with minor frequency of the favorable allele possess high potential to reduce SCS in German Holstein cattle by selection.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Leche/citología , Polimorfismo de Nucleótido Simple , Crianza de Animales Domésticos , Animales , Cruzamiento , Cartilla de ADN , Industria Lechera , Femenino , Alemania , Masculino
7.
Animals (Basel) ; 13(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38136796

RESUMEN

The present study aimed to contribute to the limited research on buffalo (Bubalus bubalis) semen traits by incorporating genomic data. A total of 8465 ejaculates were collected. The genotyping procedure was conducted using the Axiom® Buffalo Genotyping 90 K array designed by the Affymetrix Expert Design Program. After conducting a quality assessment, we utilized 67,282 SNPs genotyped in 192 animals. We identified several genomic loci explaining high genetic variance by employing single-step genomic evaluation. The aforementioned regions were located on buffalo chromosomes no. 3, 4, 6, 7, 14, 16, 20, 22, and the X-chromosome. The X-chromosome exhibited substantial influence, accounting for 4.18, 4.59, 5.16, 5.19, and 4.31% of the genomic variance for ejaculate volume, mass motility, livability, abnormality, and concentration, respectively. In the examined genomic regions, we identified five novel candidate genes linked to male fertility and spermatogenesis, four in the X-chromosome and one in chromosome no. 16. Additional extensive research with larger sample sizes and datasets is imperative to validate these findings and evaluate their applicability for genomic selection.

8.
J Agric Food Chem ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780201

RESUMEN

Cattle and buffalo served as the first and second largest dairy animals, respectively, providing 96% milk products worldwide. Understanding the mechanisms underlying milk synthesis is critical to develop the technique to improve milk production. Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are an enzyme family that plays vital roles in lipid metabolism, including ACAT1, ACAT2, ACAA1, ACAA2, and HADHB. Our present study showed that these five members were orthologous in six livestock species including buffalo and cattle. Transcriptomic data analyses derived from different lactations stages showed that ACAA1 displayed different expression patterns between buffalo and cattle. Immunohistochemistry staining revealed that ACAA1 were dominantly located in the mammary epithelial cells of these two dairy animals. Knockdown of ACAA1 inhibited mammary epithelial cell proliferation and triglyceride and ß-casein secretion by regulating related gene expressions in cattle and buffalo. In contrast, ACAA1 overexpression promoted cell proliferation and triglyceride secretion. Finally, three novel SNPs (g.-681A>T, g.-23117C>T, and g.-24348G>T) were detected and showed significant association with milk production traits of Mediterranean buffaloes. In addition, g.-681A>T mutation located in the promoter region changed transcriptional activity significantly. Our findings suggested that ACAA1 play a key role in regulating buffalo and cattle milk synthesis and provided basic information to further understand the dairy animal lactation physiology.

9.
Front Genet ; 13: 896910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734439

RESUMEN

Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism and was highly expressed in the lactating mammary gland epithelial cells (MGECs). The objectives of the present study were to detect the polymorphisms within ACSL1 in Mediterranean buffalo, the genetic effects of these mutations on milk production traits, and understand the gene regulatory effects on MGECs. A total of twelve SNPs were identified by sequencing, including nine SNPs in the intronic region and three in the exonic region. Association analysis showed that nine SNPs were associated with one or more traits. Two haplotype blocks were identified, and among these haplotypes, the individuals carrying the H2H2 haplotype in block 1 and H5H1 in block 2 were superior to those of other haplotypes in milk production traits. Immunohistological staining of ACSL1 in buffalo mammary gland tissue indicated its expression and localization in MGECs. Knockdown of ACSL1 inhibited cell growth, diminished MGEC lipid synthesis and triglyceride secretion, and downregulated CCND1, PPARγ, and FABP3 expression. The overexpression of ACSL1 promoted cell growth, enhanced the triglyceride secretion, and upregulated CCND1, PPARγ, SREBP1, and FABP3. ACSL1 was also involved in milk protein regulation as indicated by the decreased or increased ß-casein concentration and CSN3 expression in the knockdown or overexpression group, respectively. In summary, our present study depicted that ACSL1 mutations were associated with buffalo milk production performance. This may be related to its positive regulation roles on MGEC growth, milk fat, and milk protein synthesis. The current study showed the potential of the ACSL1 gene as a candidate for milk production traits and provides a new understanding of the physiological mechanisms underlying milk production regulation.

10.
Front Genet ; 12: 617128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833774

RESUMEN

Bovine and buffalo are important livestock species that have contributed to human lives for more than 1000 years. Improving fertility is very important to reduce the cost of production. In the current review, we classified reproductive traits into three categories: ovulation, breeding, and calving related traits. We systematically summarized the heritability estimates, molecular markers, and genomic selection (GS) for reproductive traits of bovine and buffalo. This review aimed to compile the heritability and genome-wide association studies (GWASs) related to reproductive traits in both bovine and buffalos and tried to highlight the possible disciplines which should benefit buffalo breeding. The estimates of heritability of reproductive traits ranged were from 0 to 0.57 and there were wide differences between the populations. For some specific traits, such as age of puberty (AOP) and calving difficulty (CD), the majority beef population presents relatively higher heritability than dairy cattle. Compared to bovine, genetic studies for buffalo reproductive traits are limited for age at first calving and calving interval traits. Several quantitative trait loci (QTLs), candidate genes, and SNPs associated with bovine reproductive traits were screened and identified by candidate gene methods and/or GWASs. The IGF1 and LEP pathways in addition to non-coding RNAs are highlighted due to their crucial relevance with reproductive traits. The distribution of QTLs related to various traits showed a great differences. Few GWAS have been performed so far on buffalo age at first calving, calving interval, and days open traits. In addition, we summarized the GS studies on bovine and buffalo reproductive traits and compared the accuracy between different reports. Taken together, GWAS and candidate gene approaches can help to understand the molecular genetic mechanisms of complex traits. Recently, GS has been used extensively and can be performed on multiple traits to improve the accuracy of prediction even for traits with low heritability, and can be combined with multi-omics for further analysis.

11.
Res Vet Sci ; 119: 45-51, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29857245

RESUMEN

Mastitis is one of the costliest diseases affecting the world's dairy industry. The important contribution of complement Component 5 (C5) to phagocytosis, which plays a major role in the defence of the bovine mammary gland against infection, makes this component of innate immunity a potential contributor in defending udder against mastitis. The objectives of this study were to sequence and analyse the whole coding region of the C5 gene in Egyptian buffalo and cattle, to detect any nucleotide variations (polymorphisms) and to investigate their associations with milk somatic cell score (SCS) as an indicator of mastitis in dairy animals. We sequenced a buffalo C5 cDNA fragment of 5336 bp (KP221293) and a cattle C5 cDNA fragment of 5303 bp (KP221294), which included the whole coding region and 3-UTR. Buffalo and cattle C5 cDNA shared sequence identity of 99%. The predicted complement C5 proteins consist of 1677 amino acid residues in both animals, one amino acid less than in humans and three amino acids more than in mouse C5 protein. Comparing cDNA sequences of different animals revealed nine novel SNPs in buffalo and seven SNPs in cattle, with two of them being novel. The association analysis revealed that five SNPs in buffalo are highly associated with SCS; indicating the contribution of complement C5 variants in buffalo mastitis resistance. No significant associations were detected between C5 variants and SCS in cattle. This is the first report about C5 variants in buffalo and its association with SCS.


Asunto(s)
Búfalos , Bovinos , Complemento C5/genética , Mastitis Bovina/genética , Animales , Egipto , Femenino , Leche , Polimorfismo de Nucleótido Simple
12.
J Genet ; 96(1): 65-73, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28360391

RESUMEN

Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.


Asunto(s)
Búfalos/genética , Complemento C3/genética , Resistencia a la Enfermedad/genética , Mastitis Bovina/genética , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Búfalos/inmunología , Bovinos , Complemento C3/química , Complemento C3/inmunología , ADN Complementario/química , ADN Complementario/genética , Resistencia a la Enfermedad/inmunología , Egipto , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Mastitis Bovina/inmunología , Modelos Moleculares , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Conformación Proteica , Análisis de Secuencia de ADN
13.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA