Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Biol ; 151(5): 1025-34, 2000 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-11086004

RESUMEN

Rapamycin, an antifungal macrolide antibiotic, mimics starvation conditions in Saccharomyces cerevisiae through activation of a general G(0) program that includes widespread effects on translation and transcription. Macroautophagy, a catabolic membrane trafficking phenomenon, is a prominent part of this response. Two views of the induction of autophagy may be considered. In one, up-regulation of proteins involved in autophagy causes its induction, implying that autophagy is the result of a signal transduction mechanism leading from Tor to the transcriptional and translational machinery. An alternative hypothesis postulates the existence of a dedicated signal transduction mechanism that induces autophagy directly. We tested these possibilities by assaying the effects of cycloheximide and specific mutations on the induction of autophagy. We find that induction of autophagy takes place in the absence of de novo protein synthesis, including that of specific autophagy-related proteins that are up-regulated in response to rapamycin. We also find that dephosphorylation of Apg13p, a signal transduction event that correlates with the onset of autophagy, is also independent of new protein synthesis. Finally, our data indicate that autophagosomes that form in the absence of protein synthesis are significantly smaller than normal, indicating a role for de novo protein synthesis in the regulation of autophagosome expansion. Our results define the existence of a signal transduction-dependent nucleation step and a separate autophagosome expansion step that together coordinate autophagosome biogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Vacuolas/enzimología , Proteínas Adaptadoras Transductoras de Señales , Aminopeptidasas/metabolismo , Antifúngicos/farmacología , Autofagia/efectos de los fármacos , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas de Ciclo Celular , Cicloheximida/farmacología , Citoplasma/enzimología , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/fisiología , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/fisiología , Nitrógeno/farmacología , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Sirolimus/farmacología , Proteínas de Transporte Vesicular
2.
Microbiol Mol Biol Rev ; 65(3): 463-79, table of contents, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11528006

RESUMEN

Unicellular eukaryotic organisms must be capable of rapid adaptation to changing environments. While such changes do not normally occur in the tissues of multicellular organisms, developmental and pathological changes in the environment of cells often require adaptation mechanisms not dissimilar from those found in simpler cells. Autophagy is a catabolic membrane-trafficking phenomenon that occurs in response to dramatic changes in the nutrients available to yeast cells, for example during starvation or after challenge with rapamycin, a macrolide antibiotic whose effects mimic starvation. Autophagy also occurs in animal cells that are serum starved or challenged with specific hormonal stimuli. In macroautophagy, the form of autophagy commonly observed, cytoplasmic material is sequestered in double-membrane vesicles called autophagosomes and is then delivered to a lytic compartment such as the yeast vacuole or mammalian lysosome. In this fashion, autophagy allows the degradation and recycling of a wide spectrum of biological macromolecules. While autophagy is induced only under specific conditions, salient mechanistic aspects of autophagy are functional in a constitutive fashion. In Saccharomyces cerevisiae, induction of autophagy subverts a constitutive membrane-trafficking mechanism called the cytoplasm-to-vacuole targeting pathway from a specific mode, in which it carries the resident vacuolar hydrolase, aminopeptidase I, to a nonspecific bulk mode in which significant amounts of cytoplasmic material are also sequestered and recycled in the vacuole. The general aim of this review is to focus on insights gained into the mechanism of autophagy in yeast and also to review our understanding of the physiological significance of autophagy in both yeast and higher organisms.


Asunto(s)
Levaduras/fisiología , Autofagia/genética , Levaduras/genética
3.
Mol Cell Biol ; 13(12): 7766-73, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8246992

RESUMEN

Replication of the kinetoplast DNA minicircle light strand initiates at a highly conserved 12-nucleotide sequence, termed the universal minicircle sequence. A Crithidia fasciculata single-stranded DNA-binding protein interacts specifically with the guanine-rich heavy strand of this origin-associated sequence (Y. Tzfati, H. Abeliovich, I. Kapeller, and J. Shlomai, Proc. Natl. Acad. Sci. USA 89:6891-6895, 1992). Using the universal minicircle sequence heavy-strand probe to screen a C. fasciculata cDNA expression library, we have isolated two overlapping cDNA clones encoding the trypanosomatid universal minicircle sequence-binding protein. The complete cDNA sequence defines an open reading frame encoding a 116-amino-acid polypeptide chain consisting of five repetitions of a CCHC zinc finger motif. A significant similarity is found between this universal minicircle sequence-binding protein and two other single-stranded DNA-binding proteins identified in humans and in Leishmania major. All three proteins bind specifically to single-stranded guanine-rich DNA ligands. Partial amino acid sequence of the endogenous protein, purified to homogeneity from C. fasciculata, was identical to that deduced from the cDNA nucleotide sequence. DNA-binding characteristics of the cDNA-encoded fusion protein expressed in bacteria were identical to those of the endogenous C. fasciculata protein. Hybridization analyses reveal that the gene encoding the minicircle origin-binding protein is nuclear and may occur in the C. fasciculata chromosome as a cluster of several structural genes.


Asunto(s)
Crithidia fasciculata/genética , ADN de Cinetoplasto/genética , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Clonación Molecular , Secuencia Conservada , Crithidia fasciculata/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , ADN de Cinetoplasto/metabolismo , Escherichia coli/genética , Genes Protozoarios , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Dedos de Zinc/fisiología
4.
J Biol Chem ; 270(36): 21339-45, 1995 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-7545668

RESUMEN

Replication of kinetoplast DNA minicircles of trypanosomatids initiates at a conserved 12-nucleotide sequence, termed the universal minicircle sequence (UMS, 5'-GGGGTTGGTGTA-3'). A single-stranded nucleic acid binding protein that binds specifically to this origin-associated sequence was purified to apparent homogeneity from Crithidia fasciculata cell extracts. This UMS-binding protein (UMSBP) is a dimer of 27.4 kDa with a 13.7-kDa protomer. UMSBP binds single-stranded DNA as well as single-stranded RNA but not double-stranded or four-stranded DNA structures. Stoichiometry analysis indicates the binding of UMSBP as a protein dimer to the UMS site. The five CCHC-type zinc finger motifs of UMSBP, predicted from its cDNA sequence, are similar to the CCHC motifs found in retroviral Gag polyproteins. The remarkable conservation of this motif in a family of proteins found in eukaryotic organisms from yeast and protozoa to mammals is discussed.


Asunto(s)
Crithidia fasciculata/metabolismo , ADN de Cinetoplasto/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Dedos de Zinc , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía en Gel , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Peso Molecular , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
5.
Proc Natl Acad Sci U S A ; 89(15): 6891-5, 1992 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-1323120

RESUMEN

A sequence-specific single-stranded DNA-binding protein from the trypanosomatid protozoan Crithidia fasciculata binds to a sequence of 12 nucleotides located at the origin of replication of kinetoplast DNA minicircles. This sequence, termed the universal minicircle sequence (UMS), is conserved in the kinetoplast DNA minicircles among species of the family Trypanosomatidae. The purified protein binds specifically to the heavy strand of the DNA at this site, which consists of the sequence 5'-GGGGTTGGTGTA-3'. Binding analyses using mutated UMS dodecamers have revealed the significant contribution of each of the individual residues at the binding site, with the exception of the 3'-terminal adenine residue, to the generation of specific protein-DNA complexes. The possible role of this sequence-specific single-stranded DNA-binding protein in replication of kinetoplast DNA minicircles and the relation of the UMS to chromosomal telomeric sequences are discussed.


Asunto(s)
Crithidia fasciculata/metabolismo , Replicación del ADN , ADN Circular/metabolismo , ADN Protozoario/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Crithidia fasciculata/genética , ADN Circular/genética , ADN de Cinetoplasto , ADN Protozoario/efectos de los fármacos , Proteínas de Unión al ADN/aislamiento & purificación , Cinética , Datos de Secuencia Molecular , Mutagénesis , Telómero/metabolismo
6.
J Biol Chem ; 273(19): 11719-27, 1998 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-9565594

RESUMEN

Intracellular membrane fusion events in eukaryotic cells are thought to be mediated by protein-protein interactions between soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex proteins. We have identified and analyzed a new yeast syntaxin homolog, Tlg2p. Tlg2p is unique among known syntaxin family proteins in possessing a sizeable hydrophilic domain of 63 amino acids that is C-terminal to the membrane spanning region and nonessential for Tlg2p function. Tlg2p resides on the endosome and late Golgi by co-localization with an endocytic intermediate and co-fractionation with markers for both endosomes and late Golgi. Cells depleted for Tlg2p missort a portion of carboxypeptidase Y and are defective in endocytosis. In addition, we report that Tlg2p forms a SEC18-dependent SNARE complex with Snc2p, a vesicle SNARE known to function in Golgi to plasma membrane trafficking. Based on these findings we propose that Tlg2p is a t-SNARE that functions in transport from the endosome to the late Golgi and on the endocytic pathway.


Asunto(s)
Adenosina Trifosfatasas , Endocitosis , Aparato de Golgi/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Carboxipeptidasas/metabolismo , Catepsina A , Compartimento Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Sustancias Macromoleculares , Fusión de Membrana , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Qa-SNARE , Proteínas R-SNARE , Saccharomyces cerevisiae , Alineación de Secuencia , Homología de Secuencia de Aminoácido
7.
EMBO J ; 18(21): 6005-16, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-10545112

RESUMEN

Aminopeptidase I (API) is imported into the yeast vacuole/lysosome by a constitutive non-classical vesicular transport mechanism, the cytoplasm to vacuole targeting (Cvt) pathway. Newly synthesized precursor API is sequestered in double-membrane cytoplasmic Cvt vesicles. The Cvt vesicles fuse with the vacuole, releasing single-membrane Cvt bodies containing proAPI into the vacuolar lumen, and maturation of API occurs when the Cvt body is degraded, releasing mature API. Under starvation conditions, API is transported to the vacuole by macroautophagy, an inducible, non-selective mechanism that shares many similarities with the Cvt pathway. Here we show that Tlg2p, a member of the syntaxin family of t-SNARE proteins, and Vps45p, a Sec1p homologue, are required in the constitutive Cvt pathway, but not in inducible macroautophagy. Fractionation and protease protection experiments indicate that Tlg2p is required prior to or at the step of API segregation into the Cvt vesicle. Thus, the early Vps45-Tlg2p-dependent step of the Cvt pathway appears to be mechanistically distinct from the comparable stage in macroautophagy. Vps45p associates with both the Tlg2p and Pep12p t-SNAREs, but API maturation is not blocked in a pep12(ts) mutant, indicating that Vps45p independently regulates the function of multiple t-SNARES at distinct trafficking steps.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Autofagia , Lisosomas/metabolismo , Microscopía Electrónica , Proteínas Munc18 , Mutación , Precursores de Proteínas/metabolismo , Proteínas Qa-SNARE , Proteínas SNARE , Saccharomyces cerevisiae , Sirolimus/farmacología , Vacuolas/metabolismo
8.
EMBO J ; 17(9): 2494-503, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9564032

RESUMEN

We previously identified BET3 by its genetic interactions with BET1, a gene whose SNARE-like product acts in endoplasmic reticulum (ER)-to-Golgi transport. To gain insight into the function of Bet3p, we added three c-myc tags to its C-terminus and immunopurified this protein from a clarified detergent extract. Here we report that Bet3p is a member of a large complex ( approximately 800 kDa) that we call TRAPP (transport protein particle). We propose that TRAPP plays a key role in the targeting and/or fusion of ER-to-Golgi transport vesicles with their acceptor compartment. The localization of Bet3p to the cis-Golgi complex, as well as biochemical studies showing that Bet3p functions on this compartment, support this hypothesis. TRAPP contains at least nine other constituents, five of which have been identified and shown to be highly conserved novel proteins.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas Fúngicas/metabolismo , Aparato de Golgi/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Secuencia Conservada , Epítopos , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fluorescentes Verdes , Membranas Intracelulares/fisiología , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares , Fusión de Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo
9.
J Biol Chem ; 276(32): 30442-51, 2001 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-11382760

RESUMEN

To survive starvation conditions, eukaryotes have developed an evolutionarily conserved process, termed autophagy, by which the vacuole/lysosome mediates the turnover and recycling of non-essential intracellular material for re-use in critical biosynthetic reactions. Morphological and biochemical studies in Saccharomyces cerevisiae have elucidated the basic steps and mechanisms of the autophagy pathway. Although it is a degradative process, autophagy shows substantial overlap with the biosynthetic cytoplasm to vacuole targeting (Cvt) pathway that delivers resident hydrolases to the vacuole. Recent molecular genetics analyses of mutants defective in autophagy and the Cvt pathway, apg, aut, and cvt, have begun to identify the protein machinery and provide a molecular resolution of the sequestration and import mechanism that are characteristic of these pathways. In this study, we have identified a novel protein, termed Apg2, required for both the Cvt and autophagy pathways as well as the specific degradation of peroxisomes. Apg2 is required for the formation and/or completion of cytosolic sequestering vesicles that are needed for vacuolar import through both the Cvt pathway and autophagy. Biochemical studies revealed that Apg2 is a peripheral membrane protein. Apg2 localizes to the previously identified perivacuolar compartment that contains Apg9, the only characterized integral membrane protein that is required for autophagosome/Cvt vesicle formation.


Asunto(s)
Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacología , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Vacuolas/metabolismo , Proteínas Relacionadas con la Autofagia , Membrana Celular/metabolismo , Supervivencia Celular , Clonación Molecular , Escherichia coli/metabolismo , Genotipo , Proteínas de la Membrana/química , Microscopía Fluorescente , Nitrógeno/metabolismo , Fagocitosis , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fracciones Subcelulares , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA