Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 608(7924): 719-723, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36002489

RESUMEN

The Montreal Protocol is successfully protecting the ozone layer. The main halogen gases responsible for stratospheric ozone depletion have been regulated under the Protocol, their combined atmospheric abundances are declining and ozone is increasing in some parts of the atmosphere1. Ozone depletion potentials2-4, relative measures of compounds' abilities to deplete stratospheric ozone, have been a key regulatory component of the Protocol in successfully guiding the phasing out in the manufacture of the most highly depleting substances. However, this latest, recovery phase in monitoring the success of the Protocol calls for further metrics. The 'delay in ozone return' has been widely used to indicate the effect of different emissions or phase-down strategies, but we argue here that it can sometimes be ambiguous or even of no use. Instead, we propose the use of an integrated ozone depletion (IOD) metric to indicate the impact of any new emission. The IOD measures the time-integrated column ozone depletion and depends only on the emission strength and the whole atmosphere and stratospheric lifetimes of the species considered. It provides a useful complementary metric of the impact of specific emissions of an ozone depleting substance for both the scientific and policy communities.

2.
Science ; 383(6685): 860-864, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386743

RESUMEN

Forestation is widely proposed for carbon dioxide (CO2) removal, but its impact on climate through changes to atmospheric composition and surface albedo remains relatively unexplored. We assessed these responses using two Earth system models by comparing a scenario with extensive global forest expansion in suitable regions to other plausible futures. We found that forestation increased aerosol scattering and the greenhouse gases methane and ozone following increased biogenic organic emissions. Additionally, forestation decreased surface albedo, which yielded a positive radiative forcing (i.e., warming). This offset up to a third of the negative forcing from the additional CO2 removal under a 4°C warming scenario. However, when forestation was pursued alongside other strategies that achieve the 2°C Paris Agreement target, the offsetting positive forcing was smaller, highlighting the urgency for simultaneous emission reductions.

3.
Nat Commun ; 14(1): 3925, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400442

RESUMEN

Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere. We show from a mechanistic climate model experiment and inter-model variability that lowermost stratospheric water vapor decreases local temperatures, and thereby causes an upward and poleward shift of subtropical jets, a strengthening of the stratospheric circulation, a poleward shift of the tropospheric eddy-driven jet and regional climate impacts. The mechanistic model experiment in combination with atmospheric observations further shows that the prevailing moist bias in current models is likely caused by the transport scheme, and can be alleviated by employing a less diffusive Lagrangian scheme. The related effects on atmospheric circulation are of similar magnitude as climate change effects. Hence, lowermost stratospheric water vapor exerts a first order effect on atmospheric circulation and improving its representation in models offers promising prospects for future research.

4.
Nat Commun ; 13(1): 7202, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418337

RESUMEN

Biogenic volatile organic compounds (BVOCs) affect climate via changes to aerosols, aerosol-cloud interactions (ACI), ozone and methane. BVOCs exhibit dependence on climate (causing a feedback) and land use but there remains uncertainty in their net climatic impact. One factor is the description of BVOC chemistry. Here, using the earth-system model UKESM1, we quantify chemistry's influence by comparing the response to doubling BVOC emissions in the pre-industrial with standard and state-of-science chemistry. The net forcing (feedback) is positive: ozone and methane increases and ACI changes outweigh enhanced aerosol scattering. Contrary to prior studies, the ACI response is driven by cloud droplet number concentration (CDNC) reductions from suppression of gas-phase SO2 oxidation. With state-of-science chemistry the feedback is 43% smaller as lower oxidant depletion yields smaller methane increases and CDNC decreases. This illustrates chemistry's significant influence on BVOC's climatic impact and the more complex pathways by which BVOCs influence climate than currently recognised.


Asunto(s)
Ozono , Compuestos Orgánicos Volátiles , Planeta Tierra , Industrias , Metano , Oxidantes
5.
Sci Bull (Beijing) ; 67(11): 1182-1190, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36545984

RESUMEN

The Arctic has experienced several extreme springtime stratospheric ozone depletion events over the past four decades, particularly in 1997, 2011 and 2020. However, the impact of this stratospheric ozone depletion on the climate system remains poorly understood. Here we show that the stratospheric ozone depletion causes significant reductions in the sea ice concentration (SIC) and the sea ice thickness (SIT) over the Kara Sea, Laptev Sea and East Siberian Sea from spring to summer. This is partially caused by enhanced ice transport from Barents-Kara Sea and East Siberian Sea to the Fram Strait, which is induced by a strengthened and longer lived polar vortex associated with stratospheric ozone depletion. Additionally, cloud longwave radiation and surface albedo feedbacks enhance the melting of Arctic sea ice, particularly along the coast of the Eurasian continent. This study highlights the need for realistic representation of stratosphere-troposphere interactions in order to accurately predict Arctic sea ice loss.


Asunto(s)
Pérdida de Ozono , Ozono Estratosférico , Cubierta de Hielo , Regiones Árticas , Estaciones del Año
6.
Nat Commun ; 12(1): 4708, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385437

RESUMEN

Explosive volcanic eruptions affect climate, but how climate change affects the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing remains unexplored. We combine an eruptive column model with an aerosol-climate model to show that the stratospheric aerosol optical depth perturbation from frequent moderate-magnitude tropical eruptions (e.g. Nabro 2011) will be reduced by 75% in a high-end warming scenario compared to today, a consequence of future tropopause height rise and unchanged eruptive column height. In contrast, global-mean radiative forcing, stratospheric warming and surface cooling from infrequent large-magnitude tropical eruptions (e.g. Mt. Pinatubo 1991) will be exacerbated by 30%, 52 and 15% in the future, respectively. These changes are driven by an aerosol size decrease, mainly caused by the acceleration of the Brewer-Dobson circulation, and an increase in eruptive column height. Quantifying changes in both eruptive column dynamics and aerosol lifecycle is therefore key to assessing the climate response to future eruptions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA