Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chem Biodivers ; 21(5): e202301739, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38243670

RESUMEN

Newly, green metallic-nanoparticles (NPs) have received scientists' interest due to their wide variable medicinal applications owned to their economical synthesis and biologically compatible nature. In this study, we used rosmarinic acid (RosA) to prepare Cu0.5Zn0.5FeO4 NPs and later encapsulated them using PEG polymer. Characterization of NPs was done using the XRD method and SEM imaging. Further, we explored the encapsulated NPs for anti-inflammatory properties by downregulating the expression of pro-inflammatory cytokines mRNA in LPS-stimulated Raw 264.7 cells. Besides, employing DPPH, NO and ABTS radical scavenging assays to examine the antioxidant activity of the synthesized Cu0.5Zn0.5FeO4 NPs. Cu0.5Zn0.5FeO4 NPs revealed moderate antioxidant activity by scavenging DPPH and nitric oxide. We demonstrated that the NPs showed high potential anti-inflammatory activity by suppressing the mRNA and protein levels of pro-inflammatory cytokines in a dose-dependent manner, in LPS-induced Raw 264.7 cells. To our best knowledge, this is the first report where RosA was found to be a suitable phyto source for the green synthesis of Cu0.5Zn0.5FeO4 NPs and their in vitro anti-inflammatory and antioxidant effects. Taken together, our findings suggest that the RosA is a green resource for the eco-friendly synthesis of Cu0.5Zn0.5FeO4/PEG NPs, which further can be employed as a novel anti-inflammatory therapeutic agent.


Asunto(s)
Antiinflamatorios , Antioxidantes , Cinamatos , Cobre , Depsidos , Lipopolisacáridos , Nanopartículas del Metal , Ácido Rosmarínico , Ratones , Animales , Depsidos/farmacología , Depsidos/química , Células RAW 264.7 , Cinamatos/química , Cinamatos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Cobre/química , Cobre/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Nanopartículas del Metal/química , Zinc/química , Zinc/farmacología , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Ácidos Sulfónicos/antagonistas & inhibidores , Ácidos Sulfónicos/química , Relación Dosis-Respuesta a Droga
2.
Saudi Pharm J ; 32(2): 101931, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298828

RESUMEN

Background: The use of tyrosine kinase inhibitors (TKIs) as a treatment for chronic myeloid leukemia (CML) has improved the natural history of the disease and increased the duration of survival. Tyrosine kinase inhibitors represent the success of target therapies that work on molecular targets, although some patients still have therapy failure. Vitamin D has antiproliferative, pro-apoptotic, and anti-angiogenic effects on cells, therefore it can be considered as a potential cancer preventative and treatment agent. Inecalcitol (TX-522) is the 14-epi-analogue of Calcitriol (1,25(OH)2-vitamin D3), and inhibits cancer cell proliferation more effectively than Calcitriol. This study was conducted to evaluate the antiproliferative and synergistic effects of the anticancer drugs Imatinib and Dasatinib in combinations with Inecalcitol on human chronic myeloid leukemia K-562 cells. Method: The growth inhibitory activities of Inecalcitol, Imatinib, Dasatinib, and different combinations of one of the two drugs (Imatinib and Dasatinib) with Inecalcitol, were determined in vitro using MTT assay against K-562 cell line. Results: Inecalcitol, Imatinib, and Dasatinib showed potent antiproliferative activities against K-562 cells with GI50 values of 5.6 µM, 0.327 µM, and 0.446 nM, respectively. Combinations of Imatinib or Dasatinib with different concentrations of Inecalcitol increased significantly the antiproliferative activities and potencies of both drugs (****p < 0.0001), with optimal GI50 values of 580 pM (Imatinib) and 0.51 pM (Dasatinib). Furthermore, the combination treatments showed synergistic interaction between the antileukemic drugs and Inecalcitol, with combination indices (CI) < 1. Conclusion: The study demonstrated that the human chronic myeloid leukemia K-562 cells were subjected to a synergistic growth inhibitory impact when antileukemic drugs (Imatinib or Dasatinib) were combined with Inecalcitol, therefore, it is recommended that these combinations be viewed as promising novel antileukemic medications and used in place of individual medications with lower dosages and negligible side effects in the treatment of CML.

3.
Molecules ; 28(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175233

RESUMEN

Introduction: Berberine is a natural isoquinoline alkaloid with anti-cancer properties. Nevertheless, the underlying mechanism of its action in human colorectal cancer (CRC) has not been thoroughly elucidated. We investigated the anti-cancer effect of berberine on HT-29, SW-480 and HCT-116 human CRC cell lines. Methods: Cell proliferation, migration and invasion were studied by MTT assay, wound healing, transwell chambers and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunostaining were used to evaluate the expression of aquaporins (AQPs) 1, 3 and 5 in colon cancer cell lines before and after treatment with berberine (10, 30 and 100 µM). RT-qPCR and Western blotting were used to further explore the PI3K/AKT signaling pathway and the molecular mechanisms underlying berberine-induced inhibition of cell proliferation. Results: We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis. HT-29, SW-480 and HCT-116 stained positively for AQP 1, 3 and 5, and berberine treatment down-regulated the expression of all three types of AQPs. Berberine also modulated PI3K/AKT pathway activity through up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level. Discussion/Conclusions: These findings indicate that berberine inhibited growth, migration and invasion of these colon cancer cell lines via down-regulation of AQP 1, 3 and 5 expressions, up-regulating PTEN which inhibited the PI3K/AKT pathway at the gene and protein levels, and that AQP 1, 3 and 5 expression level can be used as prognostic biomarkers for colon cancer metastasis.


Asunto(s)
Berberina , Neoplasias del Colon , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Berberina/farmacología , Tensinas , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Células HT29 , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
4.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408660

RESUMEN

Obesity is the most common nutritional disorder in the developed world and is associated with important comorbidities. Pancreatic lipase (PL) inhibitors play a key role in the metabolism of human fat. A series of novel epoxyketones peptide derivatives were investigated for their pancreatic lipase inhibitory activity. The epoxyketone moiety is a well-known reactive electrophile group that has been used as part of proteasome inhibitors in cancer therapy, and it is widely believed that these are very selective for targeting the proteasome active site. Here we investigated various peptide derivatives with an epoxide warhead for their anti-lipase activity. The assessment of these novel epoxyketones was performed by an in-house method that we developed for rapid screening and identification of lipase inhibitors using GC-FID. Herein, we present a novel anti-lipase pharmacophore based on epoxyketone peptide derivatives that showed potent anti-lipase activity. Many of these derivatives had comparable or more potent activity than the clinically used lipase inhibitors such as orlistat. In addition, the lipase appears to be inhibited by a wide range of epoxyketone analogues regardless of the configuration of the epoxide in the epoxyketone moiety. The presented data in this study shows the first example of the use of epoxyketone peptides as novel lipase inhibitors.


Asunto(s)
Péptidos , Inhibidores de Proteasoma , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Humanos , Lipasa , Péptidos/química , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química
5.
Mol Cell Biochem ; 476(10): 3647-3654, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34050450

RESUMEN

Breast cancer is one of the significant causes of death among women diagnosed with cancer worldwide. Even though several chemotherapy combinations are still the primary treatment of breast cancer, unsuccessful treatments, and poor prognostic outcomes are still being reported. DNA methylation and gene expression changes among two breast cancer cell lines representing luminal A (MCF-7) and triple-negative (MDA-MB-231) cancers were determined after sequential combination treatment of doxorubicin and paclitaxel and analyzed using Ingenuity Pathway Analysis. Promoter methylation changes were seen in different treated MCF-7 cells and accompanied by changes in the gene expression of CCNA1 and PTGS2. In MDA-MB-231 cells, the hypomethylation of ESR1 was not accompanied by an increase in its gene expression in any treated cells. The hypomethylation of GSTP1 and MGMT was accompanied by an increase in gene expression levels in the group treated with doxorubicin only. Also, significant downregulation of several genes like MUC1 and MKI67 in MCF-7 cells treated with doxorubicin showed much lower gene expression (- 37.63, - 10.88 folds) when compared with cells treated with paclitaxel (- 2.47, - 2.05 folds) or the combination treatment (- 18.99, - 2.81 folds), respectively. On the other hand, a synergistic effect on MMP9 gene expression was significantly seen in MDA-MB-231 cells treated with the combination (- 9.99 folds) in comparison with the cells treated with doxorubicin (- 3.62 folds) or paclitaxel (1.75 folds) alone. Chemotherapy combinations do not always augment the molecular changes seen in each drug alone, and these changes could be utilized as treatment response markers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Metilación de ADN/efectos de los fármacos , ADN de Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Doxorrubicina/farmacología , Humanos , Células MCF-7 , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
6.
Lasers Med Sci ; 34(4): 759-766, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30317401

RESUMEN

Healthy tendons play an important role in joint movements and subjected to a group of pathologies called tendinopathy due to multiple factors. Tendons have a slowly repairing process due to the low vascularity and cellularity. Treatment options aimed at potentiating the healing response and relieving symptoms. Phototherapy and platelet-rich plasma were novel treatment modalities in tendons based on photobiomodulation and growth factors during healing, and the results were encouraging suggesting calibrating treatment parameters. This study utilizes cell culture to explore the potential effect of light-emitting diode and/or growth factors in the form of platelet-rich plasma (PRP) on the activity of tenocytes isolated from sheep Achilles tendons by measuring the cell metabolism and cell mobility using cell viability and migration assays to proof safety and confirm activity. Results showed that sheep tenocyte-cultured groups treated with 5% platelet-rich plasma alone or combined with 4 J/cm2 light-emitting diode have increased viability significantly when compared to control group after a 48 h, while light-emitting diode treatment has not decreased cell migration significantly when compared with control. Result suggests that using platelet-rich plasma alone or combined with light-emitting diode might have potential to enhance healing response at the conditions applied. PRP could enhance proliferation while LED could enhance migration and proliferation. Further research is needed at longer durations.


Asunto(s)
Luz , Fototerapia , Plasma Rico en Plaquetas/metabolismo , Tenocitos/efectos de la radiación , Animales , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Modelos Biológicos , Ovinos , Tendinopatía/radioterapia , Cicatrización de Heridas/efectos de los fármacos
7.
Food Sci Nutr ; 12(4): 2818-2832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628214

RESUMEN

This is a comparative study to evaluate the effectiveness of six pomegranate peel extracts (PPEs) as antibacterial and antiproliferative agents. The Six PPEs were prepared using four solvent systems and each filtrate was concentrated to a gummy material to be used in the evaluation. The well-diffusion method was used to evaluate their antimicrobial activity against bacteria typically associated with food spoilage: Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, and three Bacillus species. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) was used to evaluate the cytotoxicity against colorectal carcinoma cells (HCT116), prostate adenocarcinoma (PC3), ovarian cancer cells (SKOV-3), and fibroblasts (MRC-5). The antioxidant evaluation was done using the 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) assay. The pH of the water-containing extracts was acidic and almost the same over 6 weeks. The six PPEs inhibited the bacterial growth in a comparable level to standard antibiotics. The effectiveness of each extract was dependent on the bacterial strain, and the Listeria showed a remarkable inhibition when exposed to the aqueous extract prepared at room temperature (RT). The aqueous (RT) and methanol PPEs had a significant antioxidant scavenging capability and a remarkable cytotoxic activity against the PC3 with half maximal inhibitory concentration (IC50) of 0.1 µg/mL. The boiled aqueous extract exhibited antiproliferative activity against HCT116 with an IC50 of 21.45 µg/mL. The effect on SKOV-3 and fibroblasts was insignificant. With the exception of butanol, the antioxidant screening shows an inverse correlation between the polarity of the extraction solvent and the IC50 exhibited by the PPEs. The variation in the effectiveness of PPEs is suggested to be due to variable soluble bioactive compounds that may interact differently with different cells, though water-containing extracts are promising antibacterial agents. The findings clearly show that pomegranate peel possessed the potential to be an eco-friendly novel source for natural compounds that can be implemented in the food industry as a natural antimicrobial and natural food additive to prevent foodborne illnesses.

8.
PLoS One ; 19(4): e0300203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564643

RESUMEN

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Asunto(s)
Esclerosis Múltiple , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Esclerosis Múltiple/patología , Astrocitos/metabolismo , Inflamación/patología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Eur J Pharm Sci ; 182: 106378, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638899

RESUMEN

Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células HCT116 , Metabolómica , Proliferación Celular
10.
Metabolites ; 13(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110196

RESUMEN

Commiphora gileadensis L. is an important endangered medicinal plant that belongs to the family Burseraceae. In this study, C. gileadensis callus culture was established successfully using mature leaves as explants cultured on Murashige and Skoog (MS) media supplemented with 24.50 µM of indole butyric acid (IBA) and 2.22 µM 6-Benzylaminopurine (BAP) (callus induction media). The obtained callus was maintained on MS medium supplemented with 16.11 µM naphthalene acetic acid (NAA) in combination with 6.66 µM BAP, which resulted in a substantial increase in callus fresh and dry weights. The cell suspension culture was established successfully using liquid callus induction media supplemented with 3.0 mg·L-1 proline. Thereafter, the chemical constituents of different C. gileadensis methanolic extracts (callus, cell suspension, leaves, and seeds) were profiled, and their cytotoxic and antimicrobial properties were investigated. The LC-MS GNPS analyses were applied for chemical profiling of the methanolic plant extracts, and several natural products were identified, including flavonols, flavanones, and flavonoids glycosides, with two unusual families that included puromycin, 10-hydroxycamptothecin, and justicidin B. The methanolic extracts have shown selective antimicrobial and cytotoxic properties against different microbes and cancer cell lines. For instance, leaf extract showed the highest zone of inhibition for Staphylococcus aureus, while cell suspension culture was effective against Staphylococcus epidermidis and Staphylococcus aureus. All extracts showed selective activity against A549 cell lines for the cytotoxicity assay, while the leaf extract had a broad cytotoxic effect against all tested cell lines. This study revealed that C. gileadensis callus and cell suspension cultures can be employed to increase the in vitro formation of biologically active compounds that may have cytotoxicity and antibacterial action against different cancer cell lines and bacterial species. Further studies are required to isolate and identify such constituents that corroborate the observed activities.

11.
Saudi J Biol Sci ; 29(9): 103391, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35942163

RESUMEN

Background: Tendinopathy or tendon injuries can affect many people, causing a huge impact on their movements and maintaining standing posture. Treatment options include physiotherapy, anti-inflammatory drugs, and alternative medicine. The use of physiotherapy or anti-inflammatory drugs may cause some side effects like pain and liver failure, respectively, therefore, alternative medicine will be a better choice. Method: Tenocytes were isolated from sheep Achilles tendon and used in Alamar blue assay to assess the metabolic activity, proliferation, and viability of tenocytes over 24 hrs. and 48 hrs., using natural and synthetic products [i.e., olive oil, oleic acid, corn oil, Inula viscosa oil, Inula viscosa extract, Nigella sativa oil, naproxen sodium, and paracetamol and LED photobiomodulation]. Furthermore, tenocytes viability was assessed by FDA/PI stain. For migration and healing of a wound, the scratch assay was used. Results: Alamar blue assay over 24 hrs. showed that Nigella sativa oil increased the metabolic activity, proliferation, and viability of tenocytes significantly, while Alamar blue over 48 hrs. showed that oleic acid, LED, and their combination increased these parameters for tenocytes significantly. Olive oil increased the viability of tenocytes significantly using FDA/PI stains. Scratch assay revealed that Inula viscosa oil, Inula viscosa extract, and paracetamol increased tenocyte migration and healing significantly. Conclusion: Nigella sativa oil, olive oil, oleic acid, Inula viscosa oil, and Inula viscosa extract may be used as an alternative therapy for tendinopathy with less side effects.

12.
Metabolites ; 12(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35736441

RESUMEN

Metabolic syndrome (MetS) is a disorder characterized by a group of factors that can increase the risk of chronic diseases, including cardiovascular diseases and type 2 diabetes mellitus (T2D). Metabolomics has provided new insight into disease diagnosis and biomarker identification. This cross-sectional investigation used an untargeted metabolomics-based technique to uncover metabolomic alterations and their relationship to pathways in normoglycemic and prediabetic MetS participants to improve disease diagnosis. Plasma samples were collected from drug-naive prediabetic MetS patients (n = 26), normoglycemic MetS patients (n = 30), and healthy (normoglycemic lean) subjects (n = 30) who met the inclusion criteria for the study. The plasma samples were analyzed using highly sensitive ultra-high-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). One-way ANOVA analysis revealed that 59 metabolites differed significantly among the three groups (p < 0.05). Glutamine, 5-hydroxy-L-tryptophan, L-sorbose, and hippurate were highly associated with MetS. However, 9-methyluric acid, sphinganine, and threonic acid were highly associated with prediabetes/MetS. Metabolic pathway analysis showed that arginine biosynthesis and glutathione metabolism were associated with MetS/prediabetes, while phenylalanine, D-glutamine and D-glutamate, and lysine degradation were highly impacted in MetS. The current study sheds light on the potential diagnostic value of some metabolites in metabolic syndrome and the role of their alteration on some of the metabolic pathways. More studies are needed in larger cohorts in order to verify the implication of the above metabolites on MetS and their diagnostic value.

13.
Horm Mol Biol Clin Investig ; 43(3): 263-271, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427448

RESUMEN

OBJECTIVES: We aimed to evaluate the levels of serum lipoprotein a, LP (a), in Jordanian patients with type 2 diabetes mellitus (DM); and to examine its relation to glycemic control, metabolic syndrome (MS) and duration of DM. The LP (a) is considered one of the independent risk factors for coronary artery disease (CAD) in the general population. METHODS: Fasting blood samples were drawn from 51 diabetic patients with type 2 DM and 31 non-diabetic age and sex control subjects. Serum LP (a) was measured along with other parameters, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and glycosylated haemoglobin (HbA1c). Correlation analyses were performed between LP (a) and the various variables measured. RESULTS: LP (a) measurement showed a skewed distribution towards the lower levels in both groups. Mean LP (a) levels showed a statistically insignificant difference between the two groups. No correlations of LP (a) were observed with age, sex or body mass index (BMI). No correlations of LP (a) with LDL-c, HDL-c, TG, TC, MS, DM duration or HbA1c were observed. The LP (a) serum levels were significantly higher in type 2 diabetic patients with retinopathy. CONCLUSIONS: LP (a) serum levels are not increased in type 2 diabetic patients; so, LP (a) may not be a reliable marker for early therapeutic interventions in DM patients, even in high-risk for thrombosis groups.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , LDL-Colesterol , Diabetes Mellitus Tipo 2/complicaciones , Hemoglobina Glucada/metabolismo , Humanos , Lipoproteína(a) , Lipoproteínas HDL , Pronóstico , Triglicéridos
14.
Sci Rep ; 12(1): 21599, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517571

RESUMEN

Prostate cancer (PC) is the second most common tumor in males worldwide. The lack of effective medication and the development of multidrug resistance towards current chemotherapeutic agents urge the need to discover novel compounds and therapeutic targets for PC. Herein, seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated for their anticancer activity against PC3 and DU145 cancer cell lines using MTT, scratch-wound healing, adhesion and invasion assays. Besides, a liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was followed to identify the biochemical pathways altered in DU145 cancer cells upon exposure to dihydroquinazolin derivatives. The seven compounds showed sufficient cytotoxicity and significantly suppressed DU145 and PC3 migration after 48 and 72 h. C2 and C5 had the most potent effect with IC50 < 15 µM and significantly inhibited PC cell adhesion and invasion. Metabolomics revealed that C5 disturbed the level of metabolites involved in essential processes for cancer cell proliferation, progression and growth including energy production, redox homeostasis, amino acids and polyamine metabolisms and choline phospholipid metabolism. The data presented herein highlighted the importance of these compounds as potential anticancer agents particularly C5, and pointed to the promising role of metabolomics as a new analytical approach to investigate the antiproliferative activity of synthesized compounds and identify new therapeutic targets.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Proliferación Celular , Antineoplásicos/uso terapéutico
15.
Antibiotics (Basel) ; 11(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35884084

RESUMEN

A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a-3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k-3m. Thus, compounds 3k-3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.

16.
Horm Mol Biol Clin Investig ; 42(1): 3-9, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33544505

RESUMEN

OBJECTIVES: Vitamin D is very important for calcium and mineral metabolism, and many hypotheses appear to link sunlight exposure with cancer risk and prognosis. As many studies supported the antitumor effect of vitamin D we wanted to investigate the potential effect of multiple vitamin D metabolites. METHODS: This study compared the anticancer effect of three inactive forms of vitamin D3 which are; cholecalciferol, alfacalcidol, and calcifediol on two human cancer cell lines colorectal cancer (CaCo II) and breast cancer (MCF-7). All were examined after 24, 48, and 72 h continuous exposure using a colorimetric assay (MTT) seeded in 96-multiwell plates. Doxorubicin anticancer used as a standard agent for comparison, while normal skin fibroblast cells (HDFa) was used as our negative control. IC50 values were calculated as indication of antitumor effect. RESULTS: Broad-spectrum of cytotoxicity with IC50 values ranging from 4 to 200 µM were found. Alfacalcidol was the most potent cytotoxic agents on colorectal cancer (CaCo II) and breast cancer (MCF-7) compared to cholecalciferol, and calcifediol. Both, alfacalcidol and calcifediol were more cytotoxic than cholecalciferol on the tested cell lines as they are partially active metabolites. Breast cancer (MCF-7) was the most sensitive to all metabolites at all-time intervals with the best IC50 values of 4.35 µM ± 1.06 after 72 h continuous exposure of alfacalcidol. CONCLUSIONS: Vitamin D metabolites are a potential option for cancer treatment along with or an alternative to chemo-therapeutics although extensive preclinical studies are required to prove this effect.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Calcifediol/farmacología , Colecalciferol/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Hidroxicolecalciferoles/farmacología , Vitamina D/metabolismo , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Calcifediol/uso terapéutico , Línea Celular Tumoral , Colecalciferol/uso terapéutico , Neoplasias Colorrectales/patología , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Hidroxicolecalciferoles/uso terapéutico , Concentración 50 Inhibidora , Células MCF-7
17.
ACS Omega ; 6(4): 2767-2776, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553895

RESUMEN

Plant polyphenols have attracted attention in recent years due to their ability to undergo oxidative coupling reactions enabled by the presence of multiple phenolic hydroxyl groups, forming chemically versatile coatings and biocompatible nanoparticles (NPs) for various applications. The aim of this study was to investigate whether coffee bean aqueous extracts, which are known to be rich in polyphenols, could serve as a natural source of NP building blocks. Extracts were prepared by heating ground Arabica beans of varying roasting degrees in water with or without the addition of sodium metaperiodate or copper sulfate as an oxidizing agent, followed by filtration. NP formation was verified by dynamic light scattering and transmission electron microscopy, which revealed the presence of nano-sized particles with varying sizes and polydispersities as a function of the coffee type and oxidizing agent used. NP colors ranged from light to medium to dark brown, and particle sizes were between 44 and 250 nm with relatively low polydispersity indices. In vitro antioxidant assays showed that oxidizing agent-treated coffee NPs had lower antioxidant potency compared to air-oxidized NPs, but the free-radical scavenging activity was still retained. Coffee NPs exhibited no antimicrobial activity against common bacterial and fungal strains. Cell viability assays demonstrated that the NPs were biocompatible in human dermal fibroblasts, while exhibiting antiproliferative activity against MCF7 breast cancer cells, particularly copper sulfate-oxidized NPs. This study presents a facile and economical method to produce template-free antioxidant NPs that may be explored for various applications such as drug delivery and cosmetics.

18.
Genes (Basel) ; 12(5)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069745

RESUMEN

Lactate dehydrogenase (LDH) is a key enzyme in the last step of glycolysis, playing a role in the pyruvate-to-lactate reaction. It is associated with the prognosis and metastasis of many cancers, including breast cancer. In this study, we investigated the changes in LDH gene expression and lactate concentrations in the culture media during tamoxifen resistance development in the MCF-7 cell line, and examined LDHB promoter methylation levels. An upregulation of 2.9 times of LDHB gene expression was observed around the IC50 concentration of tamoxifen in treated cells, while fluctuation in LDHA gene expression levels was found. Furthermore, morphological changes in the cell shape accompanied the changes in gene expression. Bisulfate treatment followed by sequencing of the LDHB promoter was performed to track any change in methylation levels; hypomethylation of CpG areas was found, suggesting that gene expression upregulation could be due to methylation level changes. Changes in LDHA and LDHB gene expression were correlated with the increase in lactate concentration in the culture media of treated MCF-7 cells.


Asunto(s)
Metilación de ADN/genética , Resistencia a Antineoplásicos/genética , Expresión Génica/genética , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Glucólisis/genética , Humanos , Células MCF-7 , Pronóstico , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba/genética
19.
Breast Cancer ; 27(2): 213-224, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31559601

RESUMEN

BACKGROUND: Breast cancer is one of the most lethal types of cancer in women worldwide. The human epidermal growth factor receptor 2 (HER2) is considered as a validated target in breast cancer therapy. Previously, we have used quantitative structure activity relationship QSAR equations and their associated pharmacophore models to screen for new promising HER2 structurally diverse inhibitory leads which were tested against HER2-overexpressing SKOV3 ovarian cancer cell line. OBJECTIVE: In this study, we sought to explore the effect of most active ligands against different normal and breast cancer cell lines that represent different breast cancer subtypes with distinguished expression levels in HER2 and HER1. METHODS: We have tested the promising compounds against SKBR3, MDA-MB-231, MCF7, human fibroblast, and MCF10 cell lines. To understand the inhibitory effects of the active ligands against HER2 over expressed breast cancer cell lines, all inhibitors and the control compound, lapatinib, were docked into the active site of HER2 enzyme performed using Ligand Fit docking engine and PMF scoring function. RESULTS: Five ligands exhibited promising results with relatively low IC50 values on cells that amplify HER2 and high IC50 on those that do not express such a receptor. The most potent compound (compound 13) showed an IC50 of 0.046 µM. To test their toxicity against normal cells, the active compounds were tested against both normal fibroblast and normal breast cancer cell MCF-10 and relatively high IC50 values were scored. The IC50 values on HER2 over-expressed breast cancer and normal fibroblast cells provided a promising safety index. Docking results showed the highest similarity in the binding site between the most active ligand and the lapatinib. CONCLUSION: Our pharmacophore model resulted in a high potent ligand that shows high potency against HER2 positive breast cancer and relatively low toxicity towards the normal human cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Lapatinib/química , Lapatinib/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
20.
J Med Chem ; 63(5): 2209-2228, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31369705

RESUMEN

The c-KIT receptor represents an attractive target for cancer therapy. Aptamers are emerging as a new promising class of nucleic acid therapeutics. In this study, a conventional SELEX approach was applied against the kinase domain of a group of c-KIT proteins (c-KITWT, c-KITD816V, and c-KITD816H) to select aptamers from a random RNA pool that can bind to the kinase domain of each target with high affinity and can selectively interfere with their kinase activities. Interestingly, our data indicated that one candidate aptamer, called V15, can specifically inhibit the in vitro kinase activity of mutant c-KITD816V with an IC50 value that is 9-fold more potent than the sunitinib drug tested under the same conditions. Another aptamer, named as H5/V36, showed the potential to distinguish between the c-KIT kinases by modulating the phosphorylation activity of each in a distinct mechanism of action and in a different potency.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Aptámeros de Nucleótidos/química , Secuencia de Bases , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Mutación Puntual , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA