Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 137(2): 235-46, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19379691

RESUMEN

X-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids, which upregulates the mTOR pathway and mTOR-dependent macroautophagy, resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge together, and vacuolate the cell. Our results uncover macroautophagic overcompensation leading to cell vacuolation and tissue atrophy as a mechanism of disease.


Asunto(s)
Genes Ligados a X , Enfermedades Musculares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Autofagia , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
2.
Ann Neurol ; 75(3): 442-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24419970

RESUMEN

Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/terapia , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Encéfalo/metabolismo , Encéfalo/patología , Condicionamiento Psicológico , Regulación hacia Abajo , Miedo/psicología , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Lafora/psicología , Ratones , Ratones Noqueados , Mioclonía/enzimología , Mioclonía/genética , Mioclonía/terapia , Fármacos Neuroprotectores/metabolismo , Placa Amiloide , Convulsiones/enzimología , Convulsiones/genética , Convulsiones/terapia
3.
J Biol Chem ; 288(48): 34627-37, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24142699

RESUMEN

Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein. We show that the absence of Epm2aip1 in mice impairs allosteric activation of GS by glucose 6-phosphate, decreases hepatic glycogen synthesis, increases liver fat, causes hepatic insulin resistance, and protects against age-related obesity. Our work identifies a novel GS-associated GS activity-modulating component of insulin resistance.


Asunto(s)
Fosfatasas de Especificidad Dual/genética , Glucógeno Sintasa/metabolismo , Glucógeno/biosíntesis , Resistencia a la Insulina/genética , Obesidad/patología , Envejecimiento/genética , Animales , Fosfatasas de Especificidad Dual/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/genética , Glucógeno Sintasa/genética , Humanos , Insulina/genética , Insulina/metabolismo , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Ratones , Obesidad/etiología , Obesidad/genética , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras
4.
Ann Neurol ; 74(2): 297-300, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23913475

RESUMEN

Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LBs are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis.


Asunto(s)
Glucógeno/antagonistas & inhibidores , Glucógeno/biosíntesis , Enfermedad de Lafora/prevención & control , Animales , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Técnicas de Inactivación de Genes , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/patología , Enfermedad de Lafora/fisiopatología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Fosfatasas no Receptoras
5.
PLoS Genet ; 7(4): e1002037, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21552327

RESUMEN

Lafora disease is the most common teenage-onset neurodegenerative disease, the main teenage-onset form of progressive myoclonus epilepsy (PME), and one of the severest epilepsies. Pathologically, a starch-like compound, polyglucosan, accumulates in neuronal cell bodies and overtakes neuronal small processes, mainly dendrites. Polyglucosan formation is catalyzed by glycogen synthase, which is activated through dephosphorylation by glycogen-associated protein phosphatase-1 (PP1). Here we remove PTG, one of the proteins that target PP1 to glycogen, from mice with Lafora disease. This results in near-complete disappearance of polyglucosans and in resolution of neurodegeneration and myoclonic epilepsy. This work discloses an entryway to treating this fatal epilepsy and potentially other glycogen storage diseases.


Asunto(s)
Glucanos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Lafora/fisiopatología , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Glucanos/análisis , Glucógeno Sintasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedad de Lafora/genética , Ratones , Ratones Noqueados
6.
J Biol Chem ; 287(30): 25650-9, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22669944

RESUMEN

The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Glucógeno/metabolismo , Enfermedad de Lafora/enzimología , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Animales , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Femenino , Glucógeno/genética , Humanos , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Masculino , Ratones , Ratones Noqueados , Fosforilación/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/genética , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas/genética
7.
Acta Neuropathol ; 125(3): 439-57, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23315026

RESUMEN

X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Autofagia/genética , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/prevención & control , Enfermedades Musculares/genética , Enfermedades Musculares/prevención & control , ATPasas de Translocación de Protón Vacuolares/deficiencia , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Leucina/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/genética , Lisosomas/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/patología , Mutación/genética , Interferencia de ARN/fisiología , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Factores de Tiempo , Vacuolas/metabolismo
8.
Brain ; 135(Pt 9): 2684-98, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22961547

RESUMEN

The most common progressive myoclonus epilepsies are the late infantile and late infantile-variant neuronal ceroid lipofuscinoses (onset before the age of 6 years), Unverricht-Lundborg disease (onset after the age of 6 years) and Lafora disease. Lafora disease is a distinct disorder with uniform course: onset in teenage years, followed by progressively worsening myoclonus, seizures, visual hallucinations and cognitive decline, leading to a vegetative state in status myoclonicus and death within 10 years. Biopsy reveals Lafora bodies, which are pathognomonic and not seen with any other progressive myoclonus epilepsies. Lafora bodies are aggregates of polyglucosans, poorly constructed glycogen molecules with inordinately long strands that render them insoluble. Lafora disease is caused by mutations in the EPM2A or EPM2B genes, encoding the laforin phosphatase and the malin ubiquitin ligase, respectively, two cytoplasmically active enzymes that regulate glycogen construction, ensuring symmetric expansion into a spherical shape, essential to its solubility. In this work, we report a new progressive myoclonus epilepsy associated with Lafora bodies, early-onset Lafora body disease, map its locus to chromosome 4q21.21, identify its gene and mutation and characterize the relationship of its gene product with laforin and malin. Early-onset Lafora body disease presents early, at 5 years, with dysarthria, myoclonus and ataxia. The combination of early-onset and early dysarthria strongly suggests late infantile-variant neuronal ceroid lipofuscinosis, not Lafora disease. Pathology reveals no ceroid lipofuscinosis, but Lafora bodies. The subsequent course is a typical progressive myoclonus epilepsy, though much more protracted than any infantile neuronal ceroid lipofuscinosis, or Lafora disease, patients living into the fourth decade. The mutation, c.781T>C (Phe261Leu), is in a gene of unknown function, PRDM8. We show that the PRDM8 protein interacts with laforin and malin and causes translocation of the two proteins to the nucleus. We find that Phe261Leu-PRDM8 results in excessive sequestration of laforin and malin in the nucleus and that it therefore likely represents a gain-of-function mutation that leads to an effective deficiency of cytoplasmic laforin and malin. We have identified a new progressive myoclonus epilepsy with Lafora bodies, early-onset Lafora body disease, 101 years after Lafora disease was first described. The results to date suggest that PRDM8, the early-onset Lafora body disease protein, regulates the cytoplasmic quantities of the Lafora disease enzymes.


Asunto(s)
Encéfalo/patología , Proteínas Portadoras/genética , Enfermedad de Lafora/genética , Músculo Esquelético/patología , Proteínas Nucleares/genética , Adolescente , Adulto , Edad de Inicio , Atrofia , Niño , Preescolar , Cromosomas Humanos Par 4 , Proteínas de Unión al ADN , Progresión de la Enfermedad , Femenino , Histona Metiltransferasas , Humanos , Enfermedad de Lafora/patología , Escala de Lod , Masculino , Mutación , Piel/patología
9.
Nat Genet ; 35(2): 125-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12958597

RESUMEN

Lafora progressive myoclonus epilepsy is characterized by pathognomonic endoplasmic reticulum (ER)-associated polyglucosan accumulations. We previously discovered that mutations in EPM2A cause Lafora disease. Here, we identify a second gene associated with this disease, NHLRC1 (also called EPM2B), which encodes malin, a putative E3 ubiquitin ligase with a RING finger domain and six NHL motifs. Laforin and malin colocalize to the ER, suggesting they operate in a related pathway protecting against polyglucosan accumulation and epilepsy.


Asunto(s)
Proteínas Portadoras/genética , Mutación , Epilepsias Mioclónicas Progresivas/genética , Proteínas Tirosina Fosfatasas/genética , Secuencia de Bases , Estudios de Cohortes , Femenino , Homocigoto , Humanos , Enfermedad de Lafora/genética , Masculino , Datos de Secuencia Molecular , Epilepsias Mioclónicas Progresivas/enzimología , Linaje , Proteínas Tirosina Fosfatasas no Receptoras , Eliminación de Secuencia , Ubiquitina-Proteína Ligasas
10.
Proc Natl Acad Sci U S A ; 106(33): 14085-90, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666602

RESUMEN

In a mouse mutagenesis screen, we isolated a mutant, Myshkin (Myk), with autosomal dominant complex partial and secondarily generalized seizures, a greatly reduced threshold for hippocampal seizures in vitro, posttetanic hyperexcitability of the CA3-CA1 hippocampal pathway, and neuronal degeneration in the hippocampus. Positional cloning and functional analysis revealed that Myk/+ mice carry a mutation (I810N) which renders the normally expressed Na(+),K(+)-ATPase alpha3 isoform inactive. Total Na(+),K(+)-ATPase activity was reduced by 42% in Myk/+ brain. The epilepsy in Myk/+ mice and in vitro hyperexcitability could be prevented by delivery of additional copies of wild-type Na(+),K(+)-ATPase alpha3 by transgenesis, which also rescued Na(+),K(+)-ATPase activity. Our findings reveal the functional significance of the Na(+),K(+)-ATPase alpha3 isoform in the control of epileptiform activity and seizure behavior.


Asunto(s)
Sistema Nervioso Central/metabolismo , Mutación , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Convulsiones/genética , Convulsiones/patología , Homología de Secuencia de Ácido Nucleico , ATPasa Intercambiadora de Sodio-Potasio/genética
11.
Ann Neurol ; 67(6): 802-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20517942

RESUMEN

OBJECTIVE: Individuals with cystic fibrosis (CF) have exercise intolerance and skeletal muscle weakness not solely attributable to physical inactivity or pulmonary function abnormalities. CF transmembrane conductance regulator (CFTR) has been demonstrated in human bronchial smooth and cardiac muscle. Using (31)P-magnetic resonance spectroscopy of skeletal muscle, we showed CF patients to have lower resting muscle adenosine triphosphate and delayed phosphocreatine recovery times after high-intensity exercise, suggesting abnormal muscle aerobic metabolism; and higher end-exercise pH values, suggesting altered bicarbonate transport. Our objective was to study CFTR expression in human skeletal muscle. METHODS AND RESULTS: We studied CFTR expression in human skeletal muscle by Western blot with anti-CFTR antibody (Ab) L12B4 and demonstrated a single band with expected molecular weight of 168kDa. We isolated the cDNA by reverse transcription polymerase chain reaction and directly sequenced a 975bp segment (c. 3,600-4,575) that was identical to the human CFTR sequence. We showed punctate staining of CFTR in sarcoplasm and sarcolemma by immunofluorescence microscopy with L12B4 Ab and secondary Alexa 488-labeled Ab. We confirmed CFTR expression in the sarcotubular network and sarcolemma by electron microscopy, using immunogold-labeled anti-CFTR Ab. We observed activation of CFTR Cl(-) channels with iodide efflux, on addition of forskolin, 3-isobutyl-1-methyl-xanthine, and 8-chlorphenylthio-cyclic adenosine monophosphate, in wild-type C57BL/6J isolated muscle fibers in contrast to no efflux from mutant F508del-CFTR muscle. INTERPRETATION: We speculate that a defect in sarcoplasmic reticulum CFTR Cl(-) channels could alter the electrochemical gradient, causing dysregulation of Ca(2+) homeostasis, for example, ryanodine receptor or sarco(endo)plasmic reticulum Ca(2+) adenosine triphosphatases essential to excitation-contraction coupling leading to exercise intolerance and muscle weakness in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Animales , Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica/métodos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Mutación/genética , Inhibidores de Fosfodiesterasa/farmacología , Sarcolema/metabolismo , Sarcolema/ultraestructura , Fracciones Subcelulares/metabolismo
12.
Ann Neurol ; 68(6): 925-33, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21077101

RESUMEN

OBJECTIVE: Glycogen, the largest cytosolic macromolecule, acquires solubility, essential to its function, through extreme branching. Lafora bodies are aggregates of polyglucosan, a long, linear, poorly branched, and insoluble form of glycogen. Lafora bodies occupy vast numbers of neuronal dendrites and perikarya in Lafora disease in time-dependent fashion, leading to intractable and fatal progressive myoclonus epilepsy. Lafora disease is caused by deficiency of either the laforin glycogen phosphatase or the malin E3 ubiquitin ligase. The 2 leading hypotheses of Lafora body formation are: (1) increased glycogen synthase activity extends glycogen strands too rapidly to allow adequate branching, resulting in polyglucosans; and (2) increased glycogen phosphate leads to glycogen conformational change, unfolding, precipitation, and conversion to polyglucosan. Recently, it was shown that in the laforin phosphatase-deficient form of Lafora disease, there is no increase in glycogen synthase, but there is a dramatic increase in glycogen phosphate, with subsequent conversion of glycogen to polyglucosan. Here, we determine whether Lafora bodies in the malin ubiquitin ligase-deficient form of the disease are due to increased glycogen synthase or increased glycogen phosphate. METHODS: We generated malin-deficient mice and tested the 2 hypotheses. RESULTS: Malin-deficient mice precisely replicate the pathology of Lafora disease with Lafora body formation in skeletal muscle, liver, and brain, and in the latter in the pathognomonic perikaryal and dendritic locations. Glycogen synthase quantity and activity are unchanged. There is a highly significant increase in glycogen phosphate. INTERPRETATION: We identify a single common modification, glycogen hyperphosphorylation, as the root cause of Lafora body pathogenesis.


Asunto(s)
Glucógeno/metabolismo , Hiperfosfatemia/etiología , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/complicaciones , Enfermedad de Lafora/patología , Músculo Esquelético/patología , Animales , Encéfalo/metabolismo , Corteza Cerebelosa/patología , Corteza Cerebelosa/ultraestructura , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/metabolismo , Regulación de la Expresión Génica/genética , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/ultraestructura , Fosfatos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia
13.
Viruses ; 13(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567674

RESUMEN

Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development. Results of immunogold transmission and scanning electron microscopy showed RSV-nucleolin co-localization on the cell surface, as would be expected for a viral receptor. RSV, through its fusion protein (RSV-F), physically interacts with RBD1,2 and these interactions can be competitively inhibited by treatment with Palivizumab or recombinant RBD1,2. Treatment with synthetic peptides derived from two 12-mer domains of RBD1,2 inhibited RSV infection in vitro, with structural analysis suggesting these domains are potentially feasible for targeting in drug development. In conclusion, the identification and characterization of domains of nucleolin that interact with RSV provide the essential groundwork toward informing design of novel nucleolin-targeting compounds in RSV drug development.


Asunto(s)
Fosfoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Receptores Virales/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Animales , Antivirales/farmacología , Línea Celular , Perros , Humanos , Inmunohistoquímica , Células de Riñón Canino Madin Darby , Microscopía Electrónica , Palivizumab/farmacología , Nucleolina
14.
Lab Invest ; 88(4): 354-64, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18227806

RESUMEN

An understanding of the structure and composition of the myelin sheath is essential to understand the pathogenesis of demyelinating diseases such as multiple sclerosis (MS). The presence of citrulline in myelin proteins in particular myelin basic protein (MBP) causes an important change in myelin structure, which destabilizes myelin. The peptidylarginine deiminases (PADs) are responsible for converting arginine in proteins to citrulline. Two of these, PAD2 and PAD4, were localized to the myelin sheath by immunogold electron microscopy. Deimination of MBP by the recombinant forms of these enzymes showed that it was extensive, that is, PAD2 deiminated 18 of 19 arginyl residues in MBP, whereas PAD4 deiminated 14 of 19 residues. In the absence of PAD2 (the PAD2-knockout mouse) PAD4 remained active with limited deimination of arginyl residues. In myelin isolated from patients with MS, the amounts of both PAD2 and PAD4 enzymes were increased compared with that in normals, and the citrullinated proteins were also increased. These data support the view that an increase in citrullinated proteins resulting from increased PAD2 and 4 is an important change in the pathogenesis of MS.


Asunto(s)
Citrulina/biosíntesis , Hidrolasas/metabolismo , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/enzimología , Animales , Arginina/metabolismo , Western Blotting , Encéfalo/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Arginina Deiminasa Proteína-Tipo 2 , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
15.
J Child Neurol ; 23(2): 240-2, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18263761

RESUMEN

Lafora epilepsy is characterized by starch formation in brain and skin and is diagnosed by skin biopsy or mutation detection. It has variable ages of onset (6-19 years) and death (18-32 years) even with the same mutation, likely due to extramutational factors. The authors identified 14 Lafora epilepsy patients in the genetic isolate of tribal Oman. The authors show that in this homogeneous environment and gene pool, the same mutation, EPM2B-c.468-469delAG, results in highly uniform ages of onset (14 years) and death (21 years). Biopsy, on the other hand, was not homogeneous (positive in 4/5 patients) and is, therefore, less sensitive than mutation testing.


Asunto(s)
Proteínas Portadoras/genética , Enfermedad de Lafora/genética , Grupos de Población/genética , Adolescente , Adulto , Edad de Inicio , Proteínas Portadoras/metabolismo , Consanguinidad , Análisis Mutacional de ADN , Muerte , Humanos , Enfermedad de Lafora/etnología , Enfermedad de Lafora/mortalidad , Enfermedad de Lafora/fisiopatología , Omán , Piel/metabolismo , Ubiquitina-Proteína Ligasas
16.
Nat Clin Pract Neurol ; 4(2): 106-11, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18256682

RESUMEN

BACKGROUND: A 20-year-old woman presented to a specialist epilepsy center with a 3-year history of drug-resistant epileptic seizures, progressive myoclonus, ataxia, and cognitive decline. INVESTIGATIONS: Neurological examination, neuropsychological testing, electrophysiological studies, skin biopsy, MRI, genetic testing, and autopsy. DIAGNOSIS: Lafora disease (EPM2), resulting from a homozygous missense mutation in EPM2B (NHLRC1; c205C>G; Pro69Ala). MANAGEMENT: Symptomatic treatment with conventional antiepileptic and antimyoclonic drugs.


Asunto(s)
Enfermedad de Lafora/patología , Enfermedad de Lafora/fisiopatología , Adulto , Progresión de la Enfermedad , Electroencefalografía , Resultado Fatal , Femenino , Humanos , Enfermedad de Lafora/genética
17.
Epileptic Disord ; 18(S2): 38-62, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27702709

RESUMEN

Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.


Asunto(s)
Enfermedad de Lafora , Animales , Modelos Animales de Enfermedad , Asesoramiento Genético , Glucógeno/metabolismo , Humanos , Enfermedad de Lafora/tratamiento farmacológico , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/fisiopatología , Ratones , Proteínas Tirosina Fosfatasas no Receptoras/genética
18.
Lancet ; 362(9390): 1112-9, 2003 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-14550699

RESUMEN

BACKGROUND: The molecular basis of clinical cholestasis is a subject of intense investigation. Villin is an actin binding, bundling, and severing protein needed for maintenance of structural integrity of canalicular microvilli, in which membrane transporters required for bile secretion are located. We aimed to investigate the role of canalicular cytoskeletal proteins in three genetically unrelated children with a biliary atresia-like clinical disorder, each of whom developed liver failure requiring liver transplantation. METHODS: Explanted livers from the three patients were examined by standard pathological methods followed by transmission and cryoimmunoelectron microscopy. With archival tissue samples, a panel of cytoskeletal proteins was investigated by immunohistochemistry and western blotting, with purified canalicular membrane preparations. Villin mRNA analyses were undertaken on liver homogenates, with primers from coding regions of the human villin gene. Classic biliary atresia, other types of cholestasis, and normal livers served as controls. FINDINGS: In patients, pronounced ultrastructural deformities of canaliculi and especially of their microvilli were noted, which correlated with absence of villin protein by immunostaining of liver tissue sections and by western blot analysis. Additionally, villin mRNA was strikingly reduced or absent. These results differed greatly from those in controls. INTERPRETATION: These results suggest that the disorder described mimics biliary atresia, but structural and molecular pathological findings differ. We propose that a functional abnormality in villin gene expression is key to the mechanism of cholestasis in patients with progressive cholestasis and hepatic failure.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Colestasis/fisiopatología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Microvellosidades/metabolismo , Microvellosidades/ultraestructura , Atresia Biliar/genética , Atresia Biliar/fisiopatología , Atresia Biliar/cirugía , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Colestasis/patología , Colestasis/cirugía , Microscopía por Crioelectrón , Femenino , Expresión Génica , Humanos , Lactante , Hígado/patología , Trasplante de Hígado , Masculino , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica , Microscopía Inmunoelectrónica , Microvellosidades/patología
19.
J Child Neurol ; 18(7): 499-501, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12940657

RESUMEN

Lafora's disease is a progressive myoclonus epilepsy with onset in adolescence and a gradual decline in cognitive functions and increase in seizure intractability. We present the case of a 16-year-old with precipitous dementia within 6 months of onset. Peripheral biopsies and EPM2A mutation analysis were negative. The diagnosis could be established only by brain biopsy.


Asunto(s)
Demencia/etiología , Enfermedad de Lafora/complicaciones , Adolescente , Biopsia , Encéfalo/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/fisiopatología , Demencia/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Enfermedad de Lafora/diagnóstico , Enfermedad de Lafora/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA