Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 572(7767): 112-115, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308534

RESUMEN

Reconstructing the detailed dietary behaviour of extinct hominins is challenging1-particularly for a species such as Australopithecus africanus, which has a highly variable dental morphology that suggests a broad diet2,3. The dietary responses of extinct hominins to seasonal fluctuations in food availability are poorly understood, and nursing behaviours even less so; most of the direct information currently available has been obtained from high-resolution trace-element geochemical analysis of Homo sapiens (both modern and fossil), Homo neanderthalensis4 and living apes5. Here we apply high-resolution trace-element analysis to two A. africanus specimens from Sterkfontein Member 4 (South Africa), dated to 2.6-2.1 million years ago. Elemental signals indicate that A. africanus infants predominantly consumed breast milk for the first year after birth. A cyclical elemental pattern observed following the nursing sequence-comparable to the seasonal dietary signal that is seen in contemporary wild primates and other mammals-indicates irregular food availability. These results are supported by isotopic evidence for a geographical range that was dominated by nutritionally depauperate areas. Cyclical accumulation of lithium in A. africanus teeth also corroborates the idea that their range was characterized by fluctuating resources, and that they possessed physiological adaptations to this instability. This study provides insights into the dietary cycles and ecological behaviours of A. africanus in response to food availability, including the potential cyclical resurgence of milk intake during times of nutritional challenge (as observed in modern wild orangutans5). The geochemical findings for these teeth reinforce the unique place of A. africanus in the fossil record, and indicate dietary stress in specimens that date to shortly before the extinction of Australopithecus in South Africa about two million years ago.


Asunto(s)
Fósiles , Hominidae , Estaciones del Año , Estrés Fisiológico , Diente/química , Animales , Lactancia Materna , Hominidae/anatomía & histología , Hominidae/fisiología , Pongo , Diente/anatomía & histología , Diente/fisiología
2.
J Hum Evol ; 163: 103121, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34992026

RESUMEN

Extant African papioninans are distinguished from macaques by the presence of excavated facial fossae; however, facial excavation differs among taxa. Mangabeys (Cercocebus, Rungwecebus, and Lophocebus) exhibit fossae that invade the zygomatic forming pronounced suborbital fossae (SOFs). Larger-bodied Papio, Mandrillus, and Theropithecus have lateral rostral fossae with minimal/absent suborbital fossae. Because prior studies have shown that mangabeys exhibit adaptations to anterior dental loading (e.g., palatal retraction), it is plausible that mangabey SOFs represent structural accommodation to masticatory-system shape rather than facial allometry, as commonly hypothesized. We analyzed covariation between zygomaxillary-surface shape, masticatory-system shape, and facial size in 141 adult crania of Macaca fascicularis, Papio kindae, Cercocebus, and Lophocebus. These taxa represent the range of papionin SOF expression while minimizing size variation (narrow allometry). Masticatory-system landmarks (39) registered palate shape, bite points, masticatory muscle attachments, and the temporomandibular joint. Semilandmarks (450) captured zygomaxillary-surface shape. Following Procrustes superimposition with semilandmark sliding and principal components analyses, multivariate regression was used to explore allometry, and two-block partial least-squares analyses (within-configuration and separate-blocks) were used to examine covariation patterns. Scores on principal components 1-2 and the first partial least-square (PLS1) separate mangabeys from Macaca and Papio. Both zygomaxillary-surface shape and masticatory-system shape are correlated with size within taxa and facial morphotypes; however, regression distributions indicate morphotype shape differences are non-allometric. PLS1 accounts for ∼95% of shape covariance (p < 0.0001) and shows strong linear correlations (r-PLS = âˆ¼0.95, p < 0.0001) between blocks. Negative PLS1 scores in mangabeys reflect deep excavation of the suborbital malar surface, palatal retraction, and anterior displacement of jaw adductor muscles and the temporomandibular joint. Neither PC1 nor PLS1 scores ordinate specimens by facial size. Taken together, these results fail to support the allometric hypothesis but suggest that mangabey zygomaxillary morphology is closely linked with adaptations to hard-object feeding.


Asunto(s)
Cercocebus , Cercopithecinae , Animales , Cercocebus/anatomía & histología , Cercopithecinae/anatomía & histología , Papio/fisiología , Filogenia , Primates
3.
BMC Biol ; 19(1): 58, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33781258

RESUMEN

BACKGROUND: A major goal of evolutionary developmental biology is to discover general models and mechanisms that create the phenotypes of organisms. However, universal models of such fundamental growth and form are rare, presumably due to the limited number of physical laws and biological processes that influence growth. One such model is the logarithmic spiral, which has been purported to explain the growth of biological structures such as teeth, claws, horns, and beaks. However, the logarithmic spiral only describes the path of the structure through space, and cannot generate these shapes. RESULTS: Here we show a new universal model based on a power law between the radius of the structure and its length, which generates a shape called a 'power cone'. We describe the underlying 'power cascade' model that explains the extreme diversity of tooth shapes in vertebrates, including humans, mammoths, sabre-toothed cats, tyrannosaurs and giant megalodon sharks. This model can be used to predict the age of mammals with ever-growing teeth, including elephants and rodents. We view this as the third general model of tooth development, along with the patterning cascade model for cusp number and spacing, and the inhibitory cascade model that predicts relative tooth size. Beyond the dentition, this new model also describes the growth of claws, horns, antlers and beaks of vertebrates, as well as the fangs and shells of invertebrates, and thorns and prickles of plants. CONCLUSIONS: The power cone is generated when the radial power growth rate is unequal to the length power growth rate. The power cascade model operates independently of the logarithmic spiral and is present throughout diverse biological systems. The power cascade provides a mechanistic basis for the generation of these pointed structures across the tree of life.


Asunto(s)
Exoesqueleto/crecimiento & desarrollo , Pico/crecimiento & desarrollo , Pezuñas y Garras/crecimiento & desarrollo , Cuernos/crecimiento & desarrollo , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Animales , Invertebrados/crecimiento & desarrollo , Modelos Biológicos , Desarrollo de la Planta , Vertebrados/crecimiento & desarrollo
4.
J Anat ; 238(6): 1425-1441, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33533053

RESUMEN

Joint mobility is a key factor in determining the functional capacity of tetrapod limbs, and is important in palaeobiological reconstructions of extinct animals. Recent advances have been made in quantifying osteological joint mobility using virtual computational methods; however, these approaches generally focus on the proximal limb joints and have seldom been applied to fossil mammals. Palorchestes azael is an enigmatic, extinct ~1000 kg marsupial with no close living relatives, whose functional ecology within Australian Pleistocene environments is poorly understood. Most intriguing is its flattened elbow morphology, which has long been assumed to indicate very low mobility at this important joint. Here, we tested elbow mobility via virtual range of motion (ROM) mapping and helical axis analysis, to quantitatively explore the limits of Palorchestes' elbow movement and compare this with their living and extinct relatives, as well as extant mammals that may represent functional analogues. We find that Palorchestes had the lowest elbow mobility among mammals sampled, even when afforded joint translations in addition to rotational degrees of freedom. This indicates that Palorchestes was limited to crouched forelimb postures, something highly unusual for mammals of this size. Coupled flexion and abduction created a skewed primary axis of movement at the elbow, suggesting an abducted forelimb posture and humeral rotation gait that is not found among marsupials and unlike that seen in any large mammals alive today. This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.


Asunto(s)
Articulación del Codo/fisiología , Miembro Anterior/fisiología , Húmero/fisiología , Postura/fisiología , Rango del Movimiento Articular/fisiología , Animales , Australia , Fenómenos Biomecánicos/fisiología , Articulación del Codo/anatomía & histología , Miembro Anterior/anatomía & histología , Fósiles , Húmero/anatomía & histología , Marsupiales , Movimiento
5.
Anesth Analg ; 133(5): 1251-1259, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181556

RESUMEN

BACKGROUND: Pediatric airway models currently available for use in education or simulation do not replicate anatomy or tissue responses to procedures. Emphasis on mass production with sturdy but homogeneous materials and low-fidelity casting techniques diminishes these models' abilities to realistically represent the unique characteristics of the pediatric airway, particularly in the infant and younger age ranges. Newer fabrication technologies, including 3-dimensional (3D) printing and castable tissue-like silicones, open new approaches to the simulation of pediatric airways with greater anatomical fidelity and utility for procedure training. METHODS: After ethics approval, available/archived computerized tomography data sets of patients under the age of 2 years were reviewed to identify those suitable for designing new models. A single 21-month-old subject was selected for 3D reconstruction. Manual thresholding was then performed to produce 3D models of selected regions and tissue types within the dataset, which were either directly 3D-printed or later cast in 3D-printed molds with a variety of tissue-like silicones. A series of testing mannequins derived using this multimodal approach were then further refined following direct clinician feedback to develop a series of pediatric airway model prototypes. RESULTS: The initial prototype consisted of separate skeletal (skull, mandible, vertebrae) and soft-tissue (nasal mucosa, pharynx, larynx, gingivae, tongue, functional temporomandibular joint [TMJ] "sleeve," skin) modules. The first iterations of these modules were generated using both single-material and multimaterial 3D printing techniques to achieve the haptic properties of real human tissues. After direct clinical feedback, subsequent prototypes relied on a combination of 3D printing for osseous elements and casting of soft-tissue components from 3D-printed molds, which refined the haptic properties of the nasal, oropharyngeal, laryngeal, and airway tissues, and improved the range of movement required for airway management procedures. This approach of modification based on clinical feedback resulted in superior functional performance. CONCLUSIONS: Our hybrid manufacturing approach, merging 3D-printed components and 3D-printed molds for silicone casting, allows a more accurate representation of both the anatomy and functional characteristics of the pediatric airway for model production. Further, it allows for the direct translation of anatomy derived from real patient medical imaging into a functional airway management simulator, and our modular design allows for modification of individual elements to easily vary anatomical configurations, haptic qualities of components or exchange components to replicate pathology.


Asunto(s)
Cabeza/anatomía & histología , Maniquíes , Modelos Anatómicos , Cuello/anatomía & histología , Impresión Tridimensional , Sistema Respiratorio/anatomía & histología , Factores de Edad , Cabeza/diagnóstico por imagen , Humanos , Lactante , Cuello/diagnóstico por imagen , Sistema Respiratorio/diagnóstico por imagen , Siliconas/química , Tomografía Computarizada por Rayos X
6.
Med Teach ; 43(2): 189-197, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33103933

RESUMEN

The teaching of medical pathology has undergone significant change in the last 30-40 years, especially in the context of employing bottled specimens or 'pots' in classroom settings. The reduction in post-mortem based teaching in medical training programs has resulted in less focus being placed on the ability of students to describe the gross anatomical pathology of specimens. Financial considerations involved in employing staff to maintain bottled specimens, space constraints and concerns with health and safety of staff and student laboratories have meant that many institutions have decommissioned their pathology collections. This report details how full-colour surface scanning coupled with CT scanning and 3 D printing allows the digital archiving of gross pathological specimens and the production of reproductions or replicas of preserved human anatomical pathology specimens that obviates many of the above issues. With modern UV curable resin printing technology, it is possible to achieve photographic quality accurate replicas comparable to the original specimens in many aspects except haptic quality. Accurate 3 D reproductions of human pathology specimens offer many advantages over traditional bottled specimens including the capacity to generate multiple copies and their use in any educational setting giving access to a broader range of potential learners and users.


Asunto(s)
Modelos Anatómicos , Impresión Tridimensional , Humanos , Reproducción , Tomografía Computarizada por Rayos X
7.
Proc Biol Sci ; 287(1933): 20201537, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32811303

RESUMEN

The relative body masses of predators and their prey strongly affect the predators' ecology. An accurate estimate of the mass of an extinct predator is therefore key to revealing its biology and the structure of the ecosystem it inhabited. Until its extinction, the thylacine was the largest extant carnivorous marsupial, but little data exist regarding its body mass, with an average of 29.5 kg the most commonly used estimate. According to the costs of carnivory model, this estimate predicts that thylacines would have focused on prey subequal to or larger than themselves; however, many studies of their functional morphology suggest a diet of smaller animals. Here, we present new body mass estimates for 93 adult thylacines, including two taxidermy specimens and four complete mounted skeletons, representing 40 known-sex specimens, using three-dimensional volumetric model-informed regressions. We demonstrate that prior estimates substantially overestimated average adult thylacine body mass. We show mixed-sex population mean (16.7 kg), mean male (19.7 kg), and mean female (13.7 kg) body masses well below prior estimates, and below the 21 kg costs of carnivory threshold. Our data show that the thylacine did not violate the costs of carnivory. The thylacine instead occupied the 14.5-21 kg predator/prey range characterized by small-prey predators capable of occasionally switching to relatively large-bodied prey if necessary.


Asunto(s)
Tamaño Corporal , Marsupiales/fisiología , Caracteres Sexuales , Animales , Australia , Carnívoros , Carnivoría , Femenino , Masculino , Marsupiales/anatomía & histología
8.
Proc Biol Sci ; 287(1938): 20202318, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171079

RESUMEN

Living true seals (phocids) are the most widely dispersed semi-aquatic marine mammals, and comprise geographically separate northern (phocine) and southern (monachine) groups. Both are thought to have evolved in the North Atlantic, with only two monachine lineages-elephant seals and lobodontins-subsequently crossing the equator. The third and most basal monachine tribe, the monk seals, have hitherto been interpreted as exclusively northern and (sub)tropical throughout their entire history. Here, we describe a new species of extinct monk seal from the Pliocene of New Zealand, the first of its kind from the Southern Hemisphere, based on one of the best-preserved and richest samples of seal fossils worldwide. This unanticipated discovery reveals that all three monachine tribes once coexisted south of the equator, and forces a profound revision of their evolutionary history: rather than primarily diversifying in the North Atlantic, monachines largely evolved in the Southern Hemisphere, and from this southern cradle later reinvaded the north. Our results suggest that true seals crossed the equator over eight times in their history. Overall, they more than double the age of the north-south dichotomy characterizing living true seals and confirms a surprisingly recent major change in southern phocid diversity.


Asunto(s)
Evolución Biológica , Phocidae , Animales , Caniformia , Fósiles , Nueva Zelanda , Filogenia
9.
Am J Phys Anthropol ; 167(2): 400-406, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30129183

RESUMEN

OBJECTIVES: Rapid prototyping (RP) technology is becoming more affordable, faster, and is now capable of building models with a high resolution and accuracy. Due to technological limitations, 3D printing in biological anthropology has been mostly limited to museum displays and forensic reconstructions. In this study, we compared the accuracy of different 3D printers to establish whether RP can be used effectively to reproduce anthropological dental collections, potentially replacing access to oftentimes fragile and irreplaceable original material. METHODS: We digitized specimens from the Yuendumu collection of Australian Aboriginal dental casts using a high-resolution white-light scanning system and reproduced them using four different 3D printing technologies: stereolithography (SLA); fused deposition modeling (FDM); binder-jetting; and material-jetting. We compared the deviations between the original 3D surface models with 3D print scans using color maps generated from a 3D metric deviation analysis. RESULTS: The 3D printed models reproduced both the detail and discrete morphology of the scanned dental casts. The results of the metric deviation analysis demonstrate that all 3D print models were accurate, with only a few small areas of high deviations. The material-jetting and SLA printers were found to perform better than the other two printing machines. CONCLUSIONS: The quality of current commercial 3D printers has reached a good level of accuracy and detail reproduction. However, the costs and printing times limit its application to produce large sample numbers for use in most anthropological studies. Nonetheless, RP offers a viable option to preserve numerically constraint fragile skeletal and dental material in paleoanthropological collections.


Asunto(s)
Modelos Dentales , Paleodontología/métodos , Impresión Tridimensional , Humanos , Estereolitografía
10.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28275142

RESUMEN

The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Cráneo/anatomía & histología , Ballenas/anatomía & histología , Animales , Filogenia
11.
J Anat ; 231(6): 787-797, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28905992

RESUMEN

Convergence is the tendency of independent species to evolve similarly when subjected to the same environmental conditions. The primitive blueprint for the circulatory system emerged around 700-600 Mya and exhibits diverse physiological adaptations across the radiations of vertebrates (Subphylum Vertebrata, Phylum Chordata). It has evolved from the early chordate circulatory system with a single layered tube in the tunicate (Subphylum Urchordata) or an amphioxus (Subphylum Cephalochordata), to a vertebrate circulatory system with a two-chambered heart made up of one atrium and one ventricle in gnathostome fish (Infraphylum Gnathostomata), to a system with a three-chambered heart made up of two atria which maybe partially divided or completely separated in amphibian tetrapods (Class Amphibia). Subsequent tetrapods, including crocodiles and alligators (Order Crocodylia, Subclass Crocodylomorpha, Class Reptilia), birds (Subclass Aves, Class Reptilia) and mammals (Class Mammalia) evolved a four-chambered heart. The structure and function of the circulatory system of each individual holds a vital role which benefits each species specifically. The special characteristics of the four-chamber mammalian heart are highlighted by the peculiar structure of the myocardial muscle.


Asunto(s)
Evolución Biológica , Corazón/anatomía & histología , Corazón/fisiología , Animales , Humanos , Vertebrados
13.
Arch Oral Biol ; 165: 106018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870611

RESUMEN

OBJECTIVE: Tooth growth and wear are commonly used tools for determining the age of mammals. The most speciose order of marsupials, Diprotodontia, is characterised by a pair of procumbent incisors within the lower jaw. This study examines the growth and wear of these incisors to understand their relationship with age and sex. DESIGN: Measurements of mandibular incisor crown and root length were made for two sister species of macropodid (kangaroos and wallabies); Macropus giganteus and Macropus fuliginosus. Histological analysis examined patterns of dentine and cementum deposition within these teeth. Broader generalisability within Diprotodontia was tested using dentally reduced Tarsipes rostratus - a species disparate in body size and incisor function to the studied macropodids. RESULTS: In the macropodid sample it is demonstrated that the hypsodont nature of these incisors makes measurements of their growth (root length) and wear (crown length) accurate indicators of age and sex. Model fitting finds that root growth proceeds according to a logarithmic function across the lifespan, while crown wear follows a pattern of exponential reduction for both macropodid species. Histological results find that secondary dentine deposition and cementum layering are further indicators of age. Incisor measurements are shown to correlate with age in the sample of T. rostratus. CONCLUSIONS: The diprotodontian incisor is a useful tool for examining chronological age and sex, both morphologically and microstructurally. This finding has implications for population ecology, palaeontology and marsupial evolution.


Asunto(s)
Incisivo , Marsupiales , Animales , Incisivo/anatomía & histología , Marsupiales/crecimiento & desarrollo , Marsupiales/anatomía & histología , Femenino , Masculino , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/anatomía & histología , Macropodidae/crecimiento & desarrollo , Macropodidae/anatomía & histología , Macropodidae/fisiología , Corona del Diente/crecimiento & desarrollo , Corona del Diente/anatomía & histología , Cemento Dental/anatomía & histología , Determinación de la Edad por los Dientes/métodos , Desgaste de los Dientes/patología , Dentina
15.
J Hum Evol ; 63(3): 527-35, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22840572

RESUMEN

We report here on evidence of early Homo around 1.0 Ma (millions of years ago) in the central plains of southern Africa. The human material, a first upper molar, was discovered during the systematic excavation of a densely-packed bone bed in the basal part of the sedimentary sequence at the Cornelia-Uitzoek fossil vertebrate locality. We dated this sequence by palaeomagnetism and correlated the bone bed to the Jaramillo subchron, between 1.07 and 0.99 Ma. This makes the specimen the oldest southern African hominine remains outside the dolomitic karst landscapes of northern South Africa. Cornelia-Uitzoek is the type locality of the Cornelian Land Mammal Age. The fauna contains an archaic component, reflecting previous biogeographic links with East Africa, and a derived component, suggesting incipient southern endemism. The bone bed is considered to be the result of the bone collecting behaviour of a large predator, possibly spotted hyaenas. Acheulian artefacts are found in small numbers within the bone bed among the fossil vertebrates, reflecting the penecontemporaneous presence of people in the immediate vicinity of the occurrence. The hominine tooth was recovered from the central, deeper part of the bone bed. In size, it clusters with southern African early Homo and it is also morphologically similar. We propose that the early Homo specimen forms part of an archaic component in the fauna, in parallel with the other archaic faunal elements at Uitzoek. This supports an emergent pattern of archaic survivors in the southern landscape at this time, but also demonstrates the presence of early Homo in the central plains of southern Africa, beyond the dolomitic karst areas.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Animales , Ecología , Historia Antigua , Diente Molar/anatomía & histología , Sudáfrica , Comportamiento del Uso de la Herramienta
16.
Evolution ; 76(6): 1260-1286, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35404473

RESUMEN

True seals (phocids) have achieved a global distribution by crossing the equator multiple times in their evolutionary history. This is remarkable, as warm tropical waters are regarded as a barrier to marine mammal dispersal and-following Bergmann's rule-may have limited crossings to small-bodied species only. Here, we show that ancestral phocids were medium sized and did not obviously follow Bergmann's rule. Instead, they ranged across a broad spectrum of environmental temperatures, without undergoing shifts in temperature- or size-related evolutionary rates following dispersals across the equator. We conclude that the tropics have not constrained phocid biogeography.


Asunto(s)
Phocidae , Animales , Tamaño Corporal , Geografía , Modelos Biológicos , Temperatura
17.
BMC Ecol Evol ; 21(1): 58, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882837

RESUMEN

BACKGROUND: Morphological convergence is a fundamental aspect of evolution, allowing for inference of the biology and ecology of extinct species by comparison with the form and function of living species as analogues. The thylacine (Thylacinus cynocephalus), the iconic recently extinct marsupial, is considered a classic example of convergent evolution with the distantly related placental wolf or dog, though almost nothing is actually known regarding its ecology. This lack of data leads to questions regarding the degree of convergence with, and the similarity of, the functional ecology of the thylacine and the wolf/dog. Here, we examined the cranium of the thylacine using 3D geometric morphometrics and two quantitative tests of convergence to more precisely determine convergent analogues, within a phylogenetically informed dataset of 56 comparative species across 12 families of marsupial and placental faunivorous mammals. Using this dataset, we investigated patterns of correlation between cranial shape and diet, phylogeny, and relative prey size across these terrestrial faunivores. RESULTS: We find a correlation between cranial, facial, and neurocranial shape and the ratio of prey-to-predator body mass, though neurocranial shape may not correlate with prey size within marsupials. The thylacine was found to group with predators that routinely take prey smaller than 45% of their own body mass, not with predators that take subequal-sized or larger prey. Both convergence tests find significant levels of convergence between the thylacine and the African jackals and South American 'foxes', with lesser support for the coyote and red fox. We find little support for convergence between the thylacine and the wolf or dog. CONCLUSIONS: Our study finds little support for a wolf/dog-like functional ecology in the thylacine, with it instead being most similar to mid-sized canids such as African jackals and South American 'foxes' that mainly take prey less than half their size. This work suggests that concepts of convergence should extend beyond superficial similarity, and broader comparisons can lead to false interpretations of functional ecology. The thylacine was a predator of small to mid-sized prey, not a big-game specialist like the placental wolf.


Asunto(s)
Marsupiales , Lobos , Animales , Pesos y Medidas Corporales , Perros , Femenino , Filogenia , Embarazo , Cráneo
18.
R Soc Open Sci ; 7(11): 201591, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33391813

RESUMEN

Today, monachine seals display the largest body sizes in pinnipeds. However, the evolution of larger body sizes has been difficult to assess due to the murky taxonomic status of fossil seals, including fossils referred to Callophoca obscura, a species thought to be present on both sides of the North Atlantic during the Neogene. Several studies have recently called into question the taxonomic validity of these fossils, especially those from the USA, as the fragmentary lectotype specimen from Belgium is of dubious diagnostic value. We find that the lectotype isolated humerus of C. obscura is too uninformative; thus, we designate C. obscura as a nomen dubium. More complete cranial and postcranial specimens from the Pliocene Yorktown Formation are described as a new taxon, Sarcodectes magnus. The cranial specimens display adaptations towards an enhanced ability to cut or chew prey that are unique within Phocidae, and estimates indicate S. magnus to be around 2.83 m in length. A parsimony phylogenetic analysis found S. magnus is a crown monachine. An ancestral state estimation of body length indicates that monachines did not have a remarkable size increase until the evolution of the lobodontins and miroungins.

19.
Science ; 368(6486)2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32241925

RESUMEN

Understanding the extinction of Australopithecus and origins of Paranthropus and Homo in South Africa has been hampered by the perceived complex geological context of hominin fossils, poor chronological resolution, and a lack of well-preserved early Homo specimens. We describe, date, and contextualize the discovery of two hominin crania from Drimolen Main Quarry in South Africa. At ~2.04 million to 1.95 million years old, DNH 152 represents the earliest definitive occurrence of Paranthropus robustus, and DNH 134 represents the earliest occurrence of a cranium with clear affinities to Homo erectus These crania also show that Homo, Paranthropus, and Australopithecus were contemporaneous at ~2 million years ago. This high taxonomic diversity is also reflected in non-hominin species and provides evidence of endemic evolution and dispersal during a period of climatic variability.


Asunto(s)
Evolución Biológica , Extinción Biológica , Hominidae/anatomía & histología , Hominidae/clasificación , Animales , Cuevas , Clasificación , Humanos , Cráneo , Sudáfrica
20.
PeerJ ; 7: e7457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534836

RESUMEN

The thylacine is popularly used as a classic example of convergent evolution between placental and marsupial mammals. Despite having a fossil history spanning over 20 million years and known since the 1960s, the thylacine is often presented in both scientific literature and popular culture as an evolutionary singleton unique in its morphological and ecological adaptations within the Australian ecosystem. Here, we synthesise and critically evaluate the current state of published knowledge regarding the known fossil record of Thylacinidae prior to the appearance of the modern species. We also present phylogenetic analyses and body mass estimates of the thylacinids to reveal trends in the evolution of hypercarnivory and ecological shifts within the family. We find support that Mutpuracinus archibaldi occupies an uncertain position outside of Thylacinidae, and consider Nimbacinus richi to likely be synonymous with N. dicksoni. The Thylacinidae were small-bodied (< ~8 kg) unspecialised faunivores until after the ~15-14 Ma middle Miocene climatic transition (MMCT). After the MMCT they dramatically increase in size and develop adaptations to a hypercarnivorous diet, potentially in response to the aridification of the Australian environment and the concomitant radiation of dasyurids. This fossil history of the thylacinids provides a foundation for understanding the ecology of the modern thylacine. It provides a framework for future studies of the evolution of hypercarnivory, cursoriality, morphological and ecological disparity, and convergence within mammalian carnivores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA