Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754813

RESUMEN

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Asunto(s)
Proteínas Arqueales/metabolismo , Hidrogenasas/metabolismo , Pyrococcus furiosus/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Evolución Molecular , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Mutagénesis , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Sodio/química , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
2.
EMBO J ; 43(7): 1273-1300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448672

RESUMEN

MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Péptidos/metabolismo , Daño del ADN
3.
Nature ; 572(7769): 382-386, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31330532

RESUMEN

The family of bacterial SidE enzymes catalyses phosphoribosyl-linked serine ubiquitination and promotes infectivity of Legionella pneumophila, a pathogenic bacteria that causes Legionnaires' disease1-3. SidE enzymes share the genetic locus with the Legionella effector SidJ that spatiotemporally opposes the toxicity of these enzymes in yeast and mammalian cells, through a mechanism that is currently unknown4-6. Deletion of SidJ leads to a substantial defect in the growth of Legionella in both its natural hosts (amoebae) and in mouse macrophages4,5. Here we demonstrate that SidJ is a glutamylase that modifies the catalytic glutamate in the mono-ADP ribosyl transferase domain of the SdeA, thus blocking the ubiquitin ligase activity of SdeA. The glutamylation activity of SidJ requires interaction with the eukaryotic-specific co-factor calmodulin, and can be regulated by intracellular changes in Ca2+ concentrations. The cryo-electron microscopy structure of SidJ in complex with human apo-calmodulin revealed the architecture of this heterodimeric glutamylase. We show that, in cells infected with L. pneumophila, SidJ mediates the glutamylation of SidE enzymes on the surface of vacuoles that contain Legionella. We used quantitative proteomics to uncover multiple host proteins as putative targets of SidJ-mediated glutamylation. Our study reveals the mechanism by which SidE ligases are inhibited by a SidJ-calmodulin glutamylase, and opens avenues for exploring an understudied protein modification (glutamylation) in eukaryotes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Legionella pneumophila/enzimología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina/metabolismo , Factores de Virulencia/metabolismo , ADP-Ribosilación , Apoproteínas/metabolismo , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Calmodulina/farmacología , Catálisis , Microscopía por Crioelectrón , Cristalografía por Rayos X , Células HEK293 , Humanos , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Virulencia/agonistas , Factores de Virulencia/química
4.
Subcell Biochem ; 104: 383-408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963493

RESUMEN

Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.


Asunto(s)
Flavinas , Transporte de Electrón , Flavinas/metabolismo , Flavinas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Conformación Proteica , Modelos Moleculares , Oxidación-Reducción
5.
PLoS Genet ; 18(8): e1010357, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35998183

RESUMEN

The decision to engage in courtship depends on external cues from potential mates and internal cues related to maturation, health, and experience. Hormones allow for coordinated conveyance of such information to peripheral tissues. Here, we show Ecdysis-Triggering Hormone (ETH) is critical for courtship inhibition after completion of copulation in Drosophila melanogaster. ETH deficiency relieves post-copulation courtship inhibition (PCCI) and increases male-male courtship. ETH appears to modulate perception and attractiveness of potential mates by direct action on primary chemosensory neurons. Knockdown of ETH receptor (ETHR) expression in GR32A-expressing neurons leads to reduced ligand sensitivity and elevated male-male courtship. We find OR67D also is critical for normal levels of PCCI after mating. ETHR knockdown in OR67D-expressing neurons or GR32A-expressing neurons relieves PCCI. Finally, ETHR silencing in the corpus allatum (CA), the sole source of juvenile hormone, also relieves PCCI; treatment with the juvenile hormone analog methoprene partially restores normal post-mating behavior. We find that ETH, a stress-sensitive reproductive hormone, appears to coordinate multiple sensory modalities to guide Drosophila male courtship behaviors, especially after mating.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cortejo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormonas Juveniles/metabolismo , Masculino , Neuronas/metabolismo , Conducta Sexual Animal/fisiología
6.
Biochemistry ; 63(1): 128-140, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38013433

RESUMEN

Electron bifurcation (BF) is an evolutionarily ancient energy coupling mechanism in anaerobes, whose associated enzymatic machinery remains enigmatic. In BF-flavoenzymes, a chemically high-potential electron forms in a thermodynamically favorable fashion by simultaneously dropping the potential of a second electron before its donation to physiological acceptors. The cryo-EM and spectroscopic analyses of the BF-enzyme Fix/EtfABCX from Thermotoga maritima suggest that the BF-site contains a special flavin-adenine dinucleotide and, upon its reduction with NADH, a low-potential electron transfers to ferredoxin and a high-potential electron reduces menaquinone. The transfer of energy from high-energy intermediates must be carefully orchestrated conformationally to avoid equilibration. Herein, anaerobic size exclusion-coupled small-angle X-ray scattering (SEC-SAXS) shows that the Fix/EtfAB heterodimer subcomplex, which houses BF- and electron transfer (ET)-flavins, exists in a conformational equilibrium of compacted and extended states between flavin-binding domains, the abundance of which is impacted by reduction and NAD(H) binding. The conformations identify dynamics associated with the T. maritima enzyme and also recapitulate states identified in static structures of homologous BF-flavoenzymes. Reduction of Fix/EtfABCX's flavins alone is insufficient to elicit domain movements conducive to ET but requires a structural "trigger" induced by NAD(H) binding. Models show that Fix/EtfABCX's superdimer exists in a combination of states with respect to its BF-subcomplexes, suggesting a cooperative mechanism between supermonomers for optimizing catalysis. The correlation of conformational states with pathway steps suggests a structural means with which Fix/EtfABCX may progress through its catalytic cycle. Collectively, these observations provide a structural framework for tracing Fix/EtfABCX's catalysis.


Asunto(s)
Electrones , Thermotoga maritima , NAD/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Transporte de Electrón , Catálisis , Flavinas/metabolismo , Oxidación-Reducción
7.
Appl Environ Microbiol ; 90(1): e0195123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38131671

RESUMEN

The platform chemical 2,3-butanediol (2,3-BDO) is used to derive products, such as 1,3-butadiene and methyl ethyl ketone, for the chemical and fuel production industries. Efficient microbial 2,3-BDO production at industrial scales has not been achieved yet for various reasons, including product inhibition to host organisms, mixed stereospecificity in product formation, and dependence on expensive substrates (i.e., glucose). In this study, we explore engineering of a 2,3-BDO pathway in Caldicellulosiruptor bescii, an extremely thermophilic (optimal growth temperature = 78°C) and anaerobic bacterium that can break down crystalline cellulose and hemicellulose into fermentable C5 and C6 sugars. In addition, C. bescii grows on unpretreated plant biomass, such as switchgrass. Biosynthesis of 2,3-BDO involves three steps: two molecules of pyruvate are condensed into acetolactate; acetolactate is decarboxylated to acetoin, and finally, acetoin is reduced to 2,3-BDO. C. bescii natively produces acetoin; therefore, in order to complete the 2,3-BDO biosynthetic pathway, C. bescii was engineered to produce a secondary alcohol dehydrogenase (sADH) to catalyze the final step. Two previously characterized, thermostable sADH enzymes with high affinity for acetoin, one from a bacterium and one from an archaeon, were tested independently. When either sADH was present in C. bescii, the recombinant strains were able to produce up to 2.5-mM 2,3-BDO from crystalline cellulose and xylan and 0.2-mM 2,3-BDO directly from unpretreated switchgrass. This serves as the basis for higher yields and productivities, and to this end, limiting factors and potential genetic targets for further optimization were assessed using the genome-scale metabolic model of C. bescii.IMPORTANCELignocellulosic plant biomass as the substrate for microbial synthesis of 2,3-butanediol is one of the major keys toward cost-effective bio-based production of this chemical at an industrial scale. However, deconstruction of biomass to release the sugars for microbial growth currently requires expensive thermochemical and enzymatic pretreatments. In this study, the thermo-cellulolytic bacterium Caldicellulosiruptor bescii was successfully engineered to produce 2,3-butanediol from cellulose, xylan, and directly from unpretreated switchgrass. Genome-scale metabolic modeling of C. bescii was applied to adjust carbon and redox fluxes to maximize productivity of 2,3-butanediol, thereby revealing bottlenecks that require genetic modifications.


Asunto(s)
Butileno Glicoles , Caldicellulosiruptor , Lactatos , Ingeniería Metabólica , Xilanos , Biomasa , Acetoína , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Celulosa/metabolismo , Clostridiales/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Azúcares
8.
Gynecol Oncol ; 186: 53-60, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599112

RESUMEN

OBJECTIVES: To identify predictors of referral and completion of germline genetic testing among newly diagnosed ovarian cancer patients, with a focus on geographic social deprivation, oncologist-level practices, and time between diagnosis and completion of testing. METHODS: Clinical and sociodemographic data were abstracted from medical records of patients newly diagnosed with ovarian cancer between 2014 and 2019 in the University of North Carolina Health System. Factors associated with referral for genetic counseling, completion of germline testing, and time between diagnosis and test results were identified using multivariable regression. RESULTS: 307/459 (67%) patients were referred for genetic counseling and 285/459 (62%) completed testing. The predicted probability of test completion was 0.83 (95% CI: 0.77-0.88) for patients with a referral compared to 0.27 (95% CI: 0.18-0.35) for patients without a referral. The predicted probability of referral was 0.75 (95% CI: 0.69-0.82) for patients at the 25th percentile of ZIP code-level Social Deprivation Index (SDI) and 0.67 (0.60-0.74) for patients at the 75th percentile of SDI. Referral varied by oncologist, with predicted probabilities ranging from 0.47 (95% CI: 0.32-0.62) to 0.93 (95% CI: 0.85-1.00) across oncologists. The median time between diagnosis and test results was 137 days (IQR: 55-248 days). This interval decreased by a predicted 24.46 days per year (95% CI: 37.75-11.16). CONCLUSIONS: We report relatively high germline testing and a promising trend in time from diagnosis to results, with variation by oncologist and patient factors. Automated referral, remote genetic counseling and sample collection, reduced out-of-pocket costs, and educational interventions should be explored.


Asunto(s)
Asesoramiento Genético , Pruebas Genéticas , Mutación de Línea Germinal , Neoplasias Ováricas , Derivación y Consulta , Humanos , Femenino , Derivación y Consulta/estadística & datos numéricos , Neoplasias Ováricas/genética , Neoplasias Ováricas/diagnóstico , Persona de Mediana Edad , Pruebas Genéticas/estadística & datos numéricos , Pruebas Genéticas/métodos , Asesoramiento Genético/estadística & datos numéricos , Adulto , Anciano , North Carolina , Instituciones Oncológicas/estadística & datos numéricos , Estudios Retrospectivos
9.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372143

RESUMEN

The electron-transferring flavoprotein-menaquinone oxidoreductase ABCX (EtfABCX), also known as FixABCX for its role in nitrogen-fixing organisms, is a member of a family of electron-transferring flavoproteins that catalyze electron bifurcation. EtfABCX enables endergonic reduction of ferredoxin (E°' ∼-450 mV) using NADH (E°' -320 mV) as the electron donor by coupling this reaction to the exergonic reduction of menaquinone (E°' -80 mV). Here we report the 2.9 Å structure of EtfABCX, a membrane-associated flavin-based electron bifurcation (FBEB) complex, from a thermophilic bacterium. EtfABCX forms a superdimer with two membrane-associated EtfCs at the dimer interface that contain two bound menaquinones. The structure reveals that, in contrast to previous predictions, the low-potential electrons bifurcated from EtfAB are most likely directly transferred to ferredoxin, while high-potential electrons reduce the quinone via two [4Fe-4S] clusters in EtfX. Surprisingly, EtfX shares remarkable structural similarity with mammalian [4Fe-4S] cluster-containing ETF ubiquinone oxidoreductase (ETF-QO), suggesting an unexpected evolutionary link between bifurcating and nonbifurcating systems. Based on this structure and spectroscopic studies of a closely related EtfABCX, we propose a detailed mechanism of the catalytic cycle and the accompanying structural changes in this membrane-associated FBEB system.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/metabolismo , Quinona Reductasas/metabolismo , Quinona Reductasas/ultraestructura , Proteínas Bacterianas/metabolismo , Catálisis , Microscopía por Crioelectrón/métodos , Transporte de Electrón , Electrones , Ferredoxinas/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , NAD/metabolismo , Fijación del Nitrógeno/fisiología , Oxidación-Reducción , Pyrococcus furiosus/metabolismo , Quinona Reductasas/fisiología , Vitamina K 2/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686601

RESUMEN

Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.


Asunto(s)
Aldehídos/metabolismo , Alimentos , Microbioma Gastrointestinal , Tungsteno/metabolismo , Aldehído Oxidorreductasas/metabolismo , Humanos , Oxidación-Reducción
11.
Biochemistry ; 62(24): 3554-3567, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38061393

RESUMEN

Electron bifurcation is an energy-conservation mechanism in which a single enzyme couples an exergonic reaction with an endergonic one. Heterotetrameric EtfABCX drives the reduction of low-potential ferredoxin (E°' ∼ -450 mV) by oxidation of the midpotential NADH (E°' = -320 mV) by simultaneously coupling the reaction to reduction of the high-potential menaquinone (E°' = -74 mV). Electron bifurcation occurs at the NADH-oxidizing bifurcating-flavin adenine dinucleotide (BF-FAD) in EtfA, which has extremely crossed half-potentials and passes the first, high-potential electron to an electron-transferring FAD and via two iron-sulfur clusters eventually to menaquinone. The low-potential electron on the BF-FAD semiquinone simultaneously reduces ferredoxin. We have expressed the genes encodingThermotoga maritimaEtfABCX in E. coli and purified the EtfABCX holoenzyme and the EtfAB subcomplex. The bifurcation activity of EtfABCX was demonstrated by using electron paramagnetic resonance (EPR) to follow accumulation of reduced ferredoxin. To elucidate structural factors that impart the bifurcating ability, EPR and NADH titrations monitored by visible spectroscopy and dye-linked enzyme assays have been employed to characterize four conserved residues, R38, P239, and V242 in EtfA and R140 in EtfB, in the immediate vicinity of the BF-FAD. The R38, P239, and V242 variants showed diminished but still significant bifurcation activity. Despite still being partially reduced by NADH, the R140 variant had no bifurcation activity, and electron transfer to its two [4Fe-4S] clusters was prevented. The role of R140 is discussed in terms of the bifurcation mechanism in EtfABCX and in the other three families of bifurcating enzymes.


Asunto(s)
Ferredoxinas , Thermotoga maritima , Ferredoxinas/metabolismo , NAD/metabolismo , Electrones , Flavina-Adenina Dinucleótido/química , Escherichia coli/genética , Escherichia coli/metabolismo , Vitamina K 2 , Bacterias/metabolismo , Transporte de Electrón , Oxidación-Reducción , Archaea/metabolismo
12.
J Biol Chem ; 298(6): 101927, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429498

RESUMEN

The EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH. On the other hand, NADH reduction of the replete proteins containing the electron-transferring FAD was multiphasic, consisting of a fast phase comparable to that seen with the depleted proteins followed by an intermediate phase that involves significant accumulation of FAD⋅-, again reflecting uncrossing of the half-potentials of the bifurcating FAD. This is then followed by a slow phase that represents the slow reduction of the electron-transferring FAD to FADH-, with reduction of the now fully reoxidized bifurcating FAD by a second equivalent of NADH. We suggest that the crossing and uncrossing of the reduction half-potentials of the bifurcating FAD is due to specific conformational changes that have been structurally characterized.


Asunto(s)
Flavoproteínas Transportadoras de Electrones , Oxidorreductasas , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/química , Flavoproteínas Transportadoras de Electrones/metabolismo , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , NAD/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína
13.
Br J Cancer ; 129(7): 1152-1165, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37596407

RESUMEN

BACKGROUND: Many high-dose groups demonstrate increased leukaemia risks, with risk greatest following childhood exposure; risks at low/moderate doses are less clear. METHODS: We conducted a pooled analysis of the major radiation-associated leukaemias (acute myeloid leukaemia (AML) with/without the inclusion of myelodysplastic syndrome (MDS), chronic myeloid leukaemia (CML), acute lymphoblastic leukaemia (ALL)) in ten childhood-exposed groups, including Japanese atomic bomb survivors, four therapeutically irradiated and five diagnostically exposed cohorts, a mixture of incidence and mortality data. Relative/absolute risk Poisson regression models were fitted. RESULTS: Of 365 cases/deaths of leukaemias excluding chronic lymphocytic leukaemia, there were 272 AML/CML/ALL among 310,905 persons (7,641,362 person-years), with mean active bone marrow (ABM) dose of 0.11 Gy (range 0-5.95). We estimated significant (P < 0.005) linear excess relative risks/Gy (ERR/Gy) for: AML (n = 140) = 1.48 (95% CI 0.59-2.85), CML (n = 61) = 1.77 (95% CI 0.38-4.50), and ALL (n = 71) = 6.65 (95% CI 2.79-14.83). There is upward curvature in the dose response for ALL and AML over the full dose range, although at lower doses (<0.5 Gy) curvature for ALL is downwards. DISCUSSION: We found increased ERR/Gy for all major types of radiation-associated leukaemia after childhood exposure to ABM doses that were predominantly (for 99%) <1 Gy, and consistent with our prior analysis focusing on <100 mGy.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia , Neoplasias Inducidas por Radiación , Exposición a la Radiación , Humanos , Factores de Riesgo , Leucemia/epidemiología , Exposición a la Radiación/efectos adversos , Incidencia , Radiación Ionizante , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Dosis de Radiación
15.
Appl Environ Microbiol ; 89(6): e0056323, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289085

RESUMEN

A genome-scale metabolic model, encompassing a total of 623 genes, 727 reactions, and 865 metabolites, was developed for Pyrococcus furiosus, an archaeon that grows optimally at 100°C by carbohydrate and peptide fermentation. The model uses subsystem-based genome annotation, along with extensive manual curation of 237 gene-reaction associations including those involved in central carbon metabolism, amino acid metabolism, and energy metabolism. The redox and energy balance of P. furiosus was investigated through random sampling of flux distributions in the model during growth on disaccharides. The core energy balance of the model was shown to depend on high acetate production and the coupling of a sodium-dependent ATP synthase and membrane-bound hydrogenase, which generates a sodium gradient in a ferredoxin-dependent manner, aligning with existing understanding of P. furiosus metabolism. The model was utilized to inform genetic engineering designs that favor the production of ethanol over acetate by implementing an NADPH and CO-dependent energy economy. The P. furiosus model is a powerful tool for understanding the relationship between generation of end products and redox/energy balance at a systems-level that will aid in the design of optimal engineering strategies for production of bio-based chemicals and fuels. IMPORTANCE The bio-based production of organic chemicals provides a sustainable alternative to fossil-based production in the face of today's climate challenges. In this work, we present a genome-scale metabolic reconstruction of Pyrococcus furiosus, a well-established platform organism that has been engineered to produce a variety of chemicals and fuels. The metabolic model was used to design optimal engineering strategies to produce ethanol. The redox and energy balance of P. furiosus was examined in detail, which provided useful insights that will guide future engineering designs.


Asunto(s)
Pyrococcus furiosus , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Etanol/metabolismo , Fermentación , Ingeniería Genética , Acetatos/metabolismo
16.
Appl Environ Microbiol ; 89(6): e0001223, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162365

RESUMEN

Genetic engineering of hyperthermophilic organisms for the production of fuels and other useful chemicals is an emerging biotechnological opportunity. In particular, for volatile organic compounds such as ethanol, fermentation at high temperatures could allow for straightforward separation by direct distillation. Currently, the upper growth temperature limit for native ethanol producers is 72°C in the bacterium Thermoanaerobacter ethanolicus JW200, and the highest temperature for heterologously-engineered bioethanol production was recently demonstrated at 85°C in the archaeon Pyrococcus furiosus. Here, we describe an engineered strain of P. furiosus that synthesizes ethanol at 95°C, utilizing a homologously-expressed native alcohol dehydrogenase, termed AdhF. Ethanol biosynthesis was compared at 75°C and 95°C with various engineered strains. At lower temperatures, the acetaldehyde substrate for AdhF is most likely produced from acetate by aldehyde ferredoxin oxidoreductase (AOR). At higher temperatures, the effect of AOR on ethanol production is negligible, suggesting that acetaldehyde is produced by pyruvate ferredoxin oxidoreductase (POR) via oxidative decarboxylation of pyruvate, a reaction known to occur only at higher temperatures. Heterologous expression of a carbon monoxide dehydrogenase complex in the AdhF overexpression strain enabled it to use CO as a source of energy, leading to increased ethanol production. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes. This work opens the door to the potential for 'bioreactive distillation' since fermentation can be performed well above the normal boiling point of ethanol. IMPORTANCE Previously, the highest temperature for biological ethanol production was 85°C. Here, we have engineered ethanol production at 95°C by the hyperthermophilic archaeon Pyrococcus furiosus. Using mutant strains, we showed that ethanol production occurs by different pathways at 75°C and 95°C. In addition, by heterologous expression of a carbon monoxide dehydrogenase complex, ethanol production by this organism was driven by the oxidation of carbon monoxide. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes.


Asunto(s)
Pyrococcus furiosus , Fermentación , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Monóxido de Carbono/metabolismo , Etanol/metabolismo , Ingeniería Metabólica , Ácido Pirúvico/metabolismo , Acetaldehído/metabolismo
17.
J Anat ; 243(5): 758-769, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37264225

RESUMEN

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a molecular imaging method that can be used to elucidate the small-molecule composition of tissues and map their spatial information using two-dimensional ion images. This technique has been used to investigate the molecular profiles of variety of tissues, including within the central nervous system, specifically the brain and spinal cord. To our knowledge, this technique has yet to be applied to tissues of the peripheral nervous system (PNS). Data generated from such analyses are expected to advance the characterization of these structures. The study aimed to: (i) establish whether DESI-MSI can discriminate the molecular characteristics of peripheral nerves and distinguish them from surrounding tissues and (ii) assess whether different peripheral nerve subtypes are characterized by unique molecular profiles. Four different nerves for which are known to carry various nerve fiber types were harvested from a fresh cadaveric donor: mixed, motor and sensory (sciatic and femoral); cutaneous, sensory (sural); and autonomic (vagus). Tissue samples were harvested to include the nerve bundles in addition to surrounding connective tissue. Samples were flash-frozen, embedded in optimal cutting temperature compound in cross-section, and sectioned at 14 µm. Following DESI-MSI analysis, identical tissue sections were stained with hematoxylin and eosin. In this proof-of-concept study, a combination of multivariate and univariate statistical methods was used to evaluate molecular differences between the nerve and adjacent tissue and between nerve subtypes. The acquired mass spectral profiles of the peripheral nerve samples presented trends in ion abundances that seemed to be characteristic of nerve tissue and spatially corresponded to the associated histology of the tissue sections. Principal component analysis (PCA) supported the separation of the samples into distinct nerve and adjacent tissue classes. This classification was further supported by the K-means clustering analysis, which showed separation of the nerve and background ions. Differences in ion expression were confirmed using ANOVA which identified statistically significant differences in ion expression between the nerve subtypes. The PCA plot suggested some separation of the nerve subtypes into four classes which corresponded with the nerve types. This was supported by the K-means clustering. Some overlap in classes was noted in these two clustering analyses. This study provides emerging evidence that DESI-MSI is an effective tool for metabolomic profiling of peripheral nerves. Our results suggest that peripheral nerves have molecular profiles that are distinct from the surrounding connective tissues and that DESI-MSI may be able to discriminate between nerve subtypes. DESI-MSI of peripheral nerves may be a valuable technique that could be used to improve our understanding of peripheral nerve anatomy and physiology. The ability to utilize ambient mass spectrometry techniques in real time could also provide an unprecedented advantage for surgical decision making, including in nerve-sparing procedures in the future.


Asunto(s)
Nervios Periféricos , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos
18.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700409

RESUMEN

The parasitoid wasp Ampulex compressa hunts down its host, the American cockroach (Periplaneta americana), and envenomates its brain to make it a behaviorally compliant food supply for its offspring. The primary target of the wasp sting is a locomotory command center called the central complex (CX). In the present study, we employ, for the first time, chronic recordings of patterned cockroach CX activity in real time as the brain is infused with wasp venom. CX envenomation is followed by sequential changes in the pattern of neuronal firing that can be divided into three distinct temporal phases during the 2 h interval after venom injection: (1) reduction in neuronal activity for roughly 10 min immediately after venom injection; (2) rebound of activity lasting up to 25 min; (3) reduction of ongoing activity for up to 2 h. Long-term reduction of CX activity after venom injection is accompanied by decreased activity of both descending interneurons projecting to thoracic locomotory circuitry (DINs) and motor output. Thus, in this study, we provide a plausible chain of events starting in the CX that leads to decreased host locomotion following brain envenomation. We propose that these events account for the onset and maintenance of the prolonged hypokinetic state observed in stung cockroaches.


Asunto(s)
Cucarachas , Mordeduras y Picaduras de Insectos , Periplaneta , Avispas , Animales , Avispas/fisiología , Venenos de Avispas , Cucarachas/fisiología , Encéfalo
19.
Nephrol Dial Transplant ; 38(3): 746-756, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35641194

RESUMEN

BACKGROUND: Vitamin K activates matrix Gla protein (MGP), a key inhibitor of vascular calcification. There is a high prevalence of sub-clinical vitamin K deficiency in patients with end-stage kidney disease. METHODS: A parallel randomized placebo-controlled pilot trial was designed to determine whether 10 mg of phylloquinone thrice weekly versus placebo modifies coronary artery calcification progression over 12 months in patients requiring hemodialysis with a coronary artery calcium score (CAC) ≥30 Agatston Units (ClinicalTrials.gov identifier NCT01528800). The primary outcome was feasibility (recruitment rate, compliance with study medication, study completion and adherence overall to study protocol). CAC score was used to assess calcification at baseline and 12 months. Secondary objectives were to explore the impact of phylloquinone on vitamin K-related biomarkers (phylloquinone, dephospho-uncarboxylated MGP and the Gla-osteocalcin to Glu-osteocalcin ratio) and events of clinical interest. RESULTS: A total of 86 patients with a CAC score ≥30 Agatston Units were randomized to either 10 mg of phylloquinone or a matching placebo three times per week. In all, 69 participants (80%) completed the trial. Recruitment rate (4.4 participants/month) and medication compliance (96%) met pre-defined feasibility criteria of ≥4.17 and ≥90%, respectively. Patients randomized to phylloquinone for 12 months had significantly reduced levels of dephospho-uncarboxylated MGP (86% reduction) and increased levels of phylloquinone and Gla-osteocalcin to Glu-osteocalcin ratio compared with placebo. There was no difference in the absolute or relative progression of coronary artery calcification between groups. CONCLUSION: We demonstrated that phylloquinone treatment improves vitamin K status and that a fully powered randomized trial may be feasible.


Asunto(s)
Enfermedad de la Arteria Coronaria , Calcificación Vascular , Humanos , Vitamina K/uso terapéutico , Vitamina K 1/uso terapéutico , Osteocalcina/uso terapéutico , Proyectos Piloto , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Calcificación Vascular/tratamiento farmacológico , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Diálisis Renal , Vitamina K 2/farmacología
20.
J Sex Med ; 20(5): 612-625, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36763941

RESUMEN

BACKGROUND: There is evidence of glandular tissue in the region of the anterior vaginal wall-female periurethral tissue (AVW-FPT) that has similar morphology and immunohistochemistry to the prostate in men. Surgical injury to this tissue has been suggested as a potential cause of sexual dysfunction following midurethral sling (MUS) procedures. However, the anatomy and embryology of these glands have not been fully resolved. This has led to difficulties in classifying this tissue as a prostate and defining its clinical significance related to MUS procedures. AIM: To describe the histological and immunohistochemical characteristics of the female periurethral glands using markers of prostate tissue and innervation and to examine their anatomical relationships to an implanted MUS. METHODS: Using gross and fine dissection, the AVW-FPT was dissected from 9 cadavers. Prior to dissection, 2 cadavers underwent simulation of the MUS procedure by a urogynecologist. Samples were paraffin embedded and serially sectioned. Immunohistochemistry was performed using markers of prostate tissue and innervation. OUTCOMES: Immunohistochemical localization of markers for prostatic tissue and innervation of the glandular tissue of the AVW-FPT, including the region of MUS implantation. RESULTS: Female periurethral glands were immunoreactive for markers of male prostatic tissue, including prostate-specific antigen, androgen receptor, HOXB13, and NKX3.1. Markers of innervation (protein gene product 9.5, choline acetyl transferase, and vasoactive intestinal polypeptide) also localized to certain regions of the glandular tissue and associated blood supply. Surgical simulation of the MUS procedure demonstrated that some periurethral glands are located in close proximity to an implanted sling. CLINICAL TRANSLATION: The AVW-FPT contains glandular tissue in the surgical field of MUS implantation. Iatrogenic damage to the female periurethral glands and the associated innervation during surgery could explain the negative impacts on sexual dysfunction reported following MUS procedures. STRENGTHS AND LIMITATIONS: This is the first study to characterize the female periurethral glands using markers of prostatic tissue in concert with markers of general and autonomic innervation and characterize their anatomical relationships within the surgical field of MUS implantation. The small sample size is a limitation of this study. CONCLUSION: We provide further evidence that the AVW-FPT contains innervated glands that are phenotypically similar to the male prostate and may share a common embryonic origin. The microscopic and immunohistochemical features of the periurethral glands may be indicative of their functional capacity in sexual responses. The location of these glands in the surgical field of MUS procedures underscores the clinical significance of this tissue.


Asunto(s)
Cabestrillo Suburetral , Incontinencia Urinaria de Esfuerzo , Humanos , Masculino , Femenino , Próstata/cirugía , Cabestrillo Suburetral/efectos adversos , Uretra/cirugía , Antígeno Prostático Específico , Inmunohistoquímica , Incontinencia Urinaria de Esfuerzo/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA