Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(1): 119-188, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891233

RESUMEN

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.


Asunto(s)
Acceso a la Información , Ecosistema , Biodiversidad , Ecología , Plantas
2.
Data Brief ; 33: 106391, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33102658

RESUMEN

The leaf inclination angle distribution is an important parameter in models useful for understanding forest canopy processes of photosynthesis, evapotranspiration, radiation transmission, and spectral reflectance. Yet, despite the strong sensitivity of many of these models to variability in leaf inclination angle distribution, relatively few measurements have been reported for different tree species in literature and databases such as TRY, and various assumptions about leaf inclination angle distribution are often made by modellers. Here we provide a dataset of leaf inclination angles for 71 different Australia-native Eucalyptus species measured in 13 botanical gardens around the world. Leaf inclination angles were measured using a leveled digital camera approach. The leaf angle measurements were used to estimate corresponding Beta distribution parameters and to assign the appropriate classic type of leaf inclination angle distribution. The data can be used to parameterize leaf angle distributions in e.g., physically-based reflectance models, land surface models, and regional carbon cycle models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA