Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glycobiology ; 30(7): 433-445, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-31897472

RESUMEN

Morquio syndrome type A, also known as MPS IVA, is a rare autosomal recessive disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase, a lysosomal hydrolase critical in the degradation of keratan sulfate (KS) and chondroitin sulfate (CS). The CS that accumulates in MPS IVA patients has a disease-specific nonreducing end (NRE) terminating with N-acetyl-D-galactosamine 6-sulfate, which can be specifically quantified after enzymatic depolymerization of CS polysaccharide chains. The abundance of N-acetyl-D-galactosamine 6-sulfate over other possible NRE structures is diagnostic for MPS IVA. Here, we describe an assay for the liberation and measurement of N-acetyl-D-galactosamine 6-sulfate and explore its application to MPS IVA patient samples in pilot studies examining disease detection, effects of age and treatment with enzyme-replacement therapy. This assay complements the existing urinary KS assay by quantifying CS-derived substrates, which represent a distinct biochemical aspect of MPS IVA. A more complete understanding of the disease could help to more definitively detect disease across age ranges and more completely measure the pharmacodynamic efficacy of therapies. Larger studies will be needed to clarify the potential value of this CS-derived substrate to manage disease in MPS IVA patients.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Mucopolisacaridosis IV/metabolismo , Adulto , Células Cultivadas , Niño , Sulfatos de Condroitina/química , Sulfatos de Condroitina/orina , Condroitinsulfatasas/metabolismo , Terapia de Reemplazo Enzimático , Humanos , Mucopolisacaridosis IV/terapia , Mucopolisacaridosis IV/orina
2.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267636

RESUMEN

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Asunto(s)
Acetilglucosaminidasa/uso terapéutico , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Factor II del Crecimiento Similar a la Insulina/uso terapéutico , Mucopolisacaridosis III/tratamiento farmacológico , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/uso terapéutico , Animales , Biomarcadores/metabolismo , Encéfalo/patología , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Endocitosis , Fibroblastos/metabolismo , Fibroblastos/patología , Heparitina Sulfato/metabolismo , Humanos , Inyecciones Intraventriculares , Hígado/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Mucopolisacaridosis III/patología , Neuronas/metabolismo , Neuronas/patología , Unión Proteica , beta-N-Acetilhexosaminidasas/metabolismo
3.
Sci Rep ; 10(1): 20365, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230178

RESUMEN

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B) is an autosomal recessive lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase activity, leading to increased levels of nondegraded heparan sulfate (HS). A mouse model has been useful to evaluate novel treatments for MPS IIIB, but has limitations. In this study, we evaluated the naturally occurring canine model of MPS IIIB for the onset and progression of biochemical and neuropathological changes during the preclinical stages (onset approximately 24-30 months of age) of canine MPS IIIB disease. Even by 1 month of age, MPS IIIB dogs had elevated HS levels in brain and cerebrospinal fluid. Analysis of histopathology of several disease-relevant regions of the forebrain demonstrated progressive lysosomal storage and microglial activation despite a lack of cerebrocortical atrophy in the oldest animals studied. More pronounced histopathology changes were detected in the cerebellum, where progressive lysosomal storage, astrocytosis and microglial activation were observed. Microglial activation was particularly prominent in cerebellar white matter and within the deep cerebellar nuclei, where neuron loss also occurred. The findings in this study will form the basis of future assessments of therapeutic efficacy in this large animal disease model.


Asunto(s)
Acetilglucosaminidasa/deficiencia , Cerebelo/patología , Corteza Cerebral/patología , Enfermedades de los Perros/patología , Mucopolisacaridosis III/patología , Prosencéfalo/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedades de los Perros/metabolismo , Perros , Femenino , Heparitina Sulfato/metabolismo , Histocitoquímica , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Microglía/metabolismo , Microglía/patología , Mucopolisacaridosis III/metabolismo , Neuronas/metabolismo , Neuronas/patología , Prosencéfalo/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
4.
Mol Ther Methods Clin Dev ; 6: 43-53, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28664165

RESUMEN

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu-/- mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu-/- mice were treated with 1-100 µg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 µg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu-/- mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu-/- mouse brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA