Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 5041-5053.e19, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37865089

RESUMEN

To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.


Asunto(s)
Proteoma , Espermatozoides , Animales , Masculino , Ratones , Axonema/química , Microscopía por Crioelectrón/métodos , Flagelos/metabolismo , Microtúbulos/metabolismo , Semen , Espermatozoides/química , Proteoma/análisis
2.
Cell ; 177(7): 1771-1780.e12, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199917

RESUMEN

Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.


Asunto(s)
Proteínas Bacterianas , Citoesqueleto , ADN Viral , Fagos Pseudomonas , Pseudomonas , Tubulina (Proteína) , Virión , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , ADN Viral/biosíntesis , ADN Viral/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/virología , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Virión/genética , Virión/metabolismo
3.
Cell ; 174(3): 505-520, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053424

RESUMEN

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , Neuropsiquiatría
4.
Cell ; 157(7): 1685-97, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949977

RESUMEN

The glucocorticoid receptor (GR), like many signaling proteins, depends on the Hsp90 molecular chaperone for in vivo function. Although Hsp90 is required for ligand binding in vivo, purified apo GR is capable of binding ligand with no enhancement from Hsp90. We reveal that Hsp70, known to facilitate client delivery to Hsp90, inactivates GR through partial unfolding, whereas Hsp90 reverses this inactivation. Full recovery of ligand binding requires ATP hydrolysis on Hsp90 and the Hop and p23 cochaperones. Surprisingly, Hsp90 ATP hydrolysis appears to regulate client transfer from Hsp70, likely through a coupling of the two chaperone's ATP cycles. Such coupling is embodied in contacts between Hsp90 and Hsp70 in the GR:Hsp70:Hsp90:Hop complex imaged by cryoelectron microscopy. Whereas GR released from Hsp70 is aggregation prone, release from Hsp90 protects GR from aggregation and enhances its ligand affinity. Together, this illustrates how coordinated chaperone interactions can enhance stability, function, and regulation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína
5.
Nature ; 601(7893): 465-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937936

RESUMEN

Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins1-3. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity4-9. GR ligand binding was previously shown to nr inhibited by Hsp70 and restored by Hsp90, aided by the co-chaperone p2310. However, a molecular understanding of the chaperone-mediated remodelling that occurs between the inactive Hsp70-Hsp90 'client-loading complex' and an activated Hsp90-p23 'client-maturation complex' is lacking for any client, including GR. Here we present a cryo-electron microscopy (cryo-EM) structure of the human GR-maturation complex (GR-Hsp90-p23), revealing that the GR ligand-binding domain is restored to a folded, ligand-bound conformation, while being simultaneously threaded through the Hsp90 lumen. In addition, p23 directly stabilizes native GR using a C-terminal helix, resulting in enhanced ligand binding. This structure of a client bound to Hsp90 in a native conformation contrasts sharply with the unfolded kinase-Hsp90 structure11. Thus, aided by direct co-chaperone-client interactions, Hsp90 can directly dictate client-specific folding outcomes. Together with the GR-loading complex structure12, we present the molecular mechanism of chaperone-mediated GR remodelling, establishing the first, to our knowledge, complete chaperone cycle for any Hsp90 client.


Asunto(s)
Microscopía por Crioelectrón , Proteínas HSP90 de Choque Térmico , Prostaglandina-E Sintasas , Receptores de Glucocorticoides , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/ultraestructura , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/ultraestructura , Humanos , Ligandos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestructura , Prostaglandina-E Sintasas/química , Prostaglandina-E Sintasas/metabolismo , Prostaglandina-E Sintasas/ultraestructura , Unión Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/ultraestructura
6.
Nature ; 601(7893): 460-464, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937942

RESUMEN

Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteínas de Homeodominio , Pliegue de Proteína , Receptores de Glucocorticoides , Microscopía por Crioelectrón , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Receptores de Glucocorticoides/metabolismo
7.
Cell ; 149(7): 1488-99, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726436

RESUMEN

Tubulins are essential for the reproduction of many eukaryotic viruses, but historically, bacteriophage were assumed not to require a cytoskeleton. Here, we identify a tubulin-like protein, PhuZ, from bacteriophage 201φ2-1 and show that it forms filaments in vivo and in vitro. The PhuZ structure has a conserved tubulin fold, with an unusual, extended C terminus that we demonstrate to be critical for polymerization in vitro and in vivo. Longitudinal packing in the crystal lattice mimics packing observed by EM of in-vitro-formed filaments, indicating how interactions between the C terminus and the following monomer drive polymerization. PhuZ forms a filamentous array that is required for positioning phage DNA within the bacterial cell. Correct positioning to the cell center and optimal phage reproduction only occur when the PhuZ filament is dynamic. Thus, we show that PhuZ assembles a spindle-like array that functions analogously to the microtubule-based spindles of eukaryotes.


Asunto(s)
Bacteriófagos/fisiología , Pseudomonas/virología , Tubulina (Proteína)/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Citoesqueleto/metabolismo , ADN Viral/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Pseudomonas/citología , Alineación de Secuencia , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Proteínas Virales/química , Proteínas Virales/genética
8.
Nature ; 600(7888): 339-343, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759323

RESUMEN

Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex1-3 upon binding of growth factor neuregulin-1ß (NRG1ß). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1ß-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1ß-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1ß-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.


Asunto(s)
Microscopía por Crioelectrón , Neurregulina-1/química , Multimerización de Proteína , Receptor ErbB-2/química , Receptor ErbB-3/química , Regulación Alostérica , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/ultraestructura , Sitios de Unión , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Modelos Moleculares , Mutación , Neurregulina-1/ultraestructura , Oncogenes/genética , Estabilidad Proteica , Receptor ErbB-2/ultraestructura , Receptor ErbB-3/ultraestructura , Trastuzumab/química , Trastuzumab/ultraestructura
9.
Nature ; 577(7789): 244-248, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819262

RESUMEN

All viruses require strategies to inhibit or evade the immune pathways of cells that they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid immune pathways that target nucleic acids, such as CRISPR-Cas and restriction-modification systems, to replicate efficiently1. Here we show that jumbo phage ΦKZ segregates its DNA from immunity nucleases of its host, Pseudomonas aeruginosa, by constructing a proteinaceous nucleus-like compartment. ΦKZ is resistant to many immunity mechanisms that target DNA in vivo, including two subtypes of CRISPR-Cas3, Cas9, Cas12a and the restriction enzymes HsdRMS and EcoRI. Cas proteins and restriction enzymes are unable to access the phage DNA throughout the infection, but engineering the relocalization of EcoRI inside the compartment enables targeting of the phage and protection of host cells. Moreover, ΦKZ is sensitive to Cas13a-a CRISPR-Cas enzyme that targets RNA-probably owing to phage mRNA localizing to the cytoplasm. Collectively, we propose that Pseudomonas jumbo phages evade a broad spectrum of DNA-targeting nucleases through the assembly of a protein barrier around their genome.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/virología , Proteínas Virales/química , Sistemas CRISPR-Cas , ADN Viral/química , Genoma Viral , Fagos Pseudomonas/química
10.
Nature ; 558(7710): 401-405, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899447

RESUMEN

Mitochondrial inheritance, genome maintenance and metabolic adaptation depend on organelle fission by dynamin-related protein 1 (DRP1) and its mitochondrial receptors. DRP1 receptors include the paralogues mitochondrial dynamics proteins of 49 and 51 kDa (MID49 and MID51) and mitochondrial fission factor (MFF); however, the mechanisms by which these proteins recruit and regulate DRP1 are unknown. Here we present a cryo-electron microscopy structure of full-length human DRP1 co-assembled with MID49 and an analysis of structure- and disease-based mutations. We report that GTP induces a marked elongation and rotation of the GTPase domain, bundle-signalling element and connecting hinge loops of DRP1. In this conformation, a network of multivalent interactions promotes the polymerization of a linear DRP1 filament with MID49 or MID51. After co-assembly, GTP hydrolysis and exchange lead to MID receptor dissociation, filament shortening and curling of DRP1 oligomers into constricted and closed rings. Together, these views of full-length, receptor- and nucleotide-bound conformations reveal how DRP1 performs mechanical work through nucleotide-driven allostery.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/ultraestructura , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/ultraestructura , Regulación Alostérica , Sitios de Unión/genética , Microscopía por Crioelectrón , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación , Factores de Elongación de Péptidos/química , Fosforilación , Dominios Proteicos , Rotación , Relación Estructura-Actividad
11.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876518

RESUMEN

Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).


Asunto(s)
Microscopía por Crioelectrón/métodos , Entropía , Saccharomyces cerevisiae/citología , Simulación por Computador , Células HEK293 , Humanos , Tomografía Computarizada por Rayos X
12.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36629399

RESUMEN

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Proteínas/química , Programas Informáticos , Reactivos de Enlaces Cruzados/química
13.
J Biol Chem ; 298(9): 102288, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926713

RESUMEN

Mechanistic target of rapamycin complex 2 (mTORC2) is a multi-subunit kinase complex, central to multiple essential signaling pathways. Two core subunits, Rictor and mSin1, distinguish it from the related mTORC1 and support context-dependent phosphorylation of its substrates. mTORC2 structures have been determined previously; however, important questions remain, particularly regarding the structural determinants mediating substrate specificity and context-dependent activity. Here, we used cryo-EM to obtain high-resolution structures of the human mTORC2 apo-complex in the presence of substrates Akt and SGK1. Using functional assays, we then tested predictions suggested by substrate-induced structural changes in mTORC2. For the first time, we visualized in the apo-state the side chain interactions between Rictor and mTOR that sterically occlude recruitment of mTORC1 substrates and confer resistance to the mTORC1 inhibitor rapamycin. Also in the apo-state, we observed that mSin1 formed extensive contacts with Rictor via a pair of short α-helices nestled between two Rictor helical repeat clusters, as well as by an extended strand that makes multiple weak contacts with Rictor helical cluster 1. In co-complex structures, we found that SGK1, but not Akt, markedly altered the conformation of the mSin1 N-terminal extended strand, disrupting multiple weak interactions while inducing a large rotation of mSin1 residue Arg-83, which then interacts with a patch of negatively charged residues within Rictor. Finally, we demonstrate mutation of Arg-83 to Ala selectively disrupts mTORC2-dependent phosphorylation of SGK1, but not of Akt, supporting context-dependent substrate selection. These findings provide new structural and functional insights into mTORC2 specificity and context-dependent activity.


Asunto(s)
Proteínas Inmediatas-Precoces , Proteínas de Unión al GTP Monoméricas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína Asociada al mTOR Insensible a la Rapamicina , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Sirolimus/farmacología , Factores de Transcripción/metabolismo
14.
Nat Rev Mol Cell Biol ; 12(11): 709-21, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21993292

RESUMEN

Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.


Asunto(s)
Microtúbulos/fisiología , Tubulina (Proteína)/fisiología , Animales , Centrosoma/química , Centrosoma/fisiología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/química , Microtúbulos/ultraestructura , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Estructura Cuaternaria de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
16.
Nature ; 547(7662): 236-240, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28636604

RESUMEN

Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN/metabolismo , Silenciador del Gen , Heterocromatina/química , Heterocromatina/genética , Humanos , Ligandos , Ratones , Células 3T3 NIH , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Fosforilación , Solubilidad , Factor de Transcripción TFIIB/metabolismo
17.
Mol Cell ; 58(4): 690-8, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000852

RESUMEN

Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these cancer cell maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine.


Asunto(s)
Redes Reguladoras de Genes , Genoma Humano/genética , Mutación , Neoplasias/genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Neoplasias/terapia , Medicina de Precisión , Análisis de Secuencia de ADN , Transducción de Señal/genética
18.
Proc Natl Acad Sci U S A ; 117(39): 24269-24273, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913054

RESUMEN

Affinity grids have great potential to facilitate rapid preparation of even quite impure samples in single-particle cryo-electron microscopy (EM). Yet despite the promising advances of affinity grids over the past decades, no single strategy has demonstrated general utility. Here we chemically functionalize cryo-EM grids coated with mostly one or two layers of graphene oxide to facilitate affinity capture. The protein of interest is tagged using a system that rapidly forms a highly specific covalent bond to its cognate catcher linked to the grid via a polyethylene glycol (PEG) spacer. Importantly, the spacer keeps particles away from both the air-water interface and the graphene oxide surface, protecting them from potential denaturation and rendering them sufficiently flexible to avoid preferential sample orientation concerns. Furthermore, the PEG spacer successfully reduces nonspecific binding, enabling high-resolution reconstructions from a much cruder lysate sample.


Asunto(s)
Microscopía por Crioelectrón/métodos , Grafito , Manejo de Especímenes/métodos , Polietilenglicoles
19.
J Biol Chem ; 296: 100613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33798554

RESUMEN

Overexpression and aggregation of α-synuclein (ASyn) are linked to the onset and pathology of Parkinson's disease and related synucleinopathies. Elevated levels of the stress-induced chaperone Hsp70 protect against ASyn misfolding and ASyn-driven neurodegeneration in cell and animal models, yet there is minimal mechanistic understanding of this important protective pathway. It is generally assumed that Hsp70 binds to ASyn using its canonical and promiscuous substrate-binding cleft to limit aggregation. Here we report that this activity is due to a novel and unexpected mode of Hsp70 action, involving neither ATP nor the typical substrate-binding cleft. We use novel ASyn oligomerization assays to show that Hsp70 directly blocks ASyn oligomerization, an early event in ASyn misfolding. Using truncations, mutations, and inhibitors, we confirm that Hsp70 interacts with ASyn via an as yet unidentified, noncanonical interaction site in the C-terminal domain. Finally, we report a biological role for a similar mode of action in H4 neuroglioma cells. Together, these findings suggest that new chemical approaches will be required to target the Hsp70-ASyn interaction in synucleinopathies. Such approaches are likely to be more specific than targeting Hsp70's canonical action. Additionally, these results raise the question of whether other misfolded proteins might also engage Hsp70 via the same noncanonical mechanism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glioma/patología , Proteínas HSP70 de Choque Térmico/metabolismo , Agregación Patológica de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Humanos , Mutación , Células Tumorales Cultivadas
20.
Mol Cell ; 53(2): 330-43, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462206

RESUMEN

While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.


Asunto(s)
Adenosina Trifosfato/metabolismo , Factor 1 Asociado a Receptor de TNF/química , Proteínas de Pez Cebra/química , Cristalografía por Rayos X , Hidrólisis , Estructura Terciaria de Proteína , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor 1 Asociado a Receptor de TNF/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA