Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Transl Oncol ; 32: 101662, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004490

RESUMEN

INTRODUCTION: Standard-of-care systemic chemotherapies for pancreatic ductal adenocarcinoma (PDAC) currently have limited clinical benefits, in addition to causing adverse side effects in many patients. One factor known to contribute to the poor chemotherapy response is the poor drug diffusion into PDAC tumors. Novel treatment methods are therefore drastically needed to improve targeted delivery of treatments. Here, we evaluated the efficacy of the 3DNA® Nanocarrier (3DNA) platform to direct delivery of therapeutics to PDAC tumors in vivo. MATERIALS AND METHODS: A panel of PDAC cell lines and a patient tissue microarray were screened for established tumor-specific proteins to identify targeting moieties for active targeting of the 3DNA. NRG mice with or without orthotopic MIA PaCa-2-luciferase PDAC tumors were treated intraperitoneally with 100 µl of fluorescently labeled 3DNA. RESULTS: Folic acid and transferrin receptors were significantly elevated in PDAC compared to normal pancreas. Accordingly, both folic acid- and transferrin-conjugated 3DNA treatments significantly increased delivery of 3DNA specifically to tumors in comparison to unconjugated 3DNA treatment. In the absence of tumors, there was an increased clearance of both folic acid-conjugated 3DNA and unconjugated 3DNA, compared to the clearance rate in tumor-bearing mice. Lastly, delivery of siLuciferase by folic acid-conjugated 3DNA in an orthotopic model of luciferase-expressing PDAC showed significant and prolonged suppression of luciferase protein expression and activity. CONCLUSION: Our study progresses the 3DNA technology as a reliable and effective treatment delivery platform for targeted therapeutic approaches in PDAC.

2.
Mol Cancer Res ; 19(10): 1763-1777, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021072

RESUMEN

Bone is a common site of cancer metastasis, including cancers such as breast, prostate, and multiple myeloma. Disseminated tumor cells (DTC) shed from a primary tumor may travel to bone and can survive undetected for years before proliferating to form overt metastatic lesions. This period of time can be defined as metastatic latency. Once in the metastatic microenvironment, DTCs engage in intercellular communication with surrounding stromal cells, which can influence cancer cell survival, proliferation, and ultimately disease progression. The role of the surrounding tumor microenvironment in regulating DTC fate is becoming increasingly recognized. We have previously shown that in the bone microenvironment, osteoblasts are "educated" by interactions with breast cancer cells, and these "educated" osteoblasts (EO) produce soluble factors that regulate cancer cell proliferation. In this study, we provide evidence indicating that EOs produce small extracellular vesicles (sEV) that suppress breast cancer proliferation, in part through regulation of ERK1/2 signaling. In addition, using EdU-incorporation assays and propidium iodide staining we demonstrate that exposure to EO-derived sEVs decreases breast cancer cell entry to S-phase of cell cycle. We also have evidence that particular microRNAs, including miR-148a-3p, are enriched in EO-derived sEVs, and that miR-148a-3p is capable of regulating breast cancer proliferation. IMPLICATIONS: These findings underscore the importance of sEV-mediated communication in the earlier stages of cancer progression, and suggest that EO-derived sEVs may be one mechanism by which the bone microenvironment suppresses breast cancer cell proliferation.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proliferación Celular/fisiología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Células 3T3 , Animales , Huesos/metabolismo , Huesos/patología , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Comunicación Celular/fisiología , Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/fisiología , Femenino , Ratones , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Microambiente Tumoral/fisiología
3.
Mol Cancer Res ; 19(2): 207-214, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33257507

RESUMEN

The DNA damage response (DDR) pathway sets the stage for tumorigenesis and provides both an opportunity for drug efficacy and resistance. Therapeutic approaches to target the DDR pathway include aiming to increase the efficacy of cytotoxic chemotherapies and synergistic drug strategies to enhance DNA damage, and hence cell death. Here, we report the first preclinical evaluation of a novel synergistic approach by using both genetic and small-molecule inhibition methods of silencing the DDR-related protein, poly (ADP-ribose) glycohydrolase (PARG), and the checkpoint kinase inhibitor, Wee1, in pancreatic ductal adenocarcinoma (PDAC) and colorectal carcinoma cells in vitro and in vivo. Mechanistically, we demonstrate that coinhibition of PARG and Wee1 synergistically decreased cell survival and increased DNA damage in an S-phase-dependent manner. IMPLICATIONS: In preclinical models, we demonstrate the efficacy and mechanism of action of targeting both PARG and Wee1 in PDAC and colorectal carcinoma cells. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/2/207/F1.large.jpg.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Fase S/efectos de los fármacos , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer Res ; 19(4): 565-572, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33593942

RESUMEN

AraC-FdUMP[10] (CF10) is a second-generation polymeric fluoropyrimidine that targets both thymidylate synthase (TS), the target of 5-fluorouracil (5-FU), and DNA topoisomerase 1 (Top1), the target of irinotecan, two drugs that are key components of FOLFIRNOX, a standard-of-care regimen for pancreatic ductal adenocarcinoma (PDAC). We demonstrated that F10 and CF10 are potent inhibitors of PDAC cell survival (in multiple cell lines including patient-derived lines) with IC50s in the nanomolar range and are nearly 1,000-fold more potent than 5-FU. The increased potency of CF10 relative to 5-FU correlated with enhanced TS inhibition and strong Top1 cleavage complex formation. Furthermore, CF10 displayed single-agent activity in PDAC murine xenografts without inducing weight loss. Through a focused drug synergy screen, we identified that combining CF10 with targeting the DNA repair enzyme, poly (ADP-ribose) glycohydrolase, induces substantial DNA damage and apoptosis. This work moves CF10 closer to a clinical trial for the treatment of PDAC. IMPLICATIONS: CF10 is a promising polymeric fluoropyrimidine with dual mechanisms of action (i.e., TS and Top1 inhibition) for the treatment of PDAC and synergizes with targeting of DNA repair. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/4/565/F1.large.jpg.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Citarabina/uso terapéutico , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos
5.
Biotechniques ; 68(2): 101-105, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31870164

RESUMEN

The use of RNA electrophoretic mobility shift assays (REMSAs) for analysis of RNA-protein interactions have been limited to lengthy assay time and qualitative assessment. To vastly improve assay efficiency, feasibility and quality of data procured from REMSAs, we combine here some of the best-known labeling and electrophoretic techniques. Nucleic acid fragments are end-labeled with fluorescent tags, as opposed to the radioactive or biotin tags. The fluorescent probes may be detected directly from the electrophoresis gel, eliminating the need for cumbersome membrane transfer and immunoblotting. Modifying the REMSA protocol to include low-molarity, lithium borate conductive media and near-infrared-labeled probes allows for a reduction assay time, quantitative comparison between experimental conditions and crisp band resolution (i.e., optimized results).


Asunto(s)
Boratos , Ensayo de Cambio de Movilidad Electroforética , Compuestos de Litio , ARN/análisis
6.
Cancer Res ; 79(17): 4491-4502, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31273064

RESUMEN

Patients with metastatic pancreatic ductal adenocarcinoma (PDAC) have an average survival of less than 1 year, underscoring the importance of evaluating novel targets with matched targeted agents. We recently identified that poly (ADP) ribose glycohydrolase (PARG) is a strong candidate target due to its dependence on the pro-oncogenic mRNA stability factor HuR (ELAVL1). Here, we evaluated PARG as a target in PDAC models using both genetic silencing of PARG and established small-molecule PARG inhibitors (PARGi), PDDX-01/04. Homologous repair-deficient cells compared with homologous repair-proficient cells were more sensitive to PARGi in vitro. In vivo, silencing of PARG significantly decreased tumor growth. PARGi synergized with DNA-damaging agents (i.e., oxaliplatin and 5-fluorouracil), but not with PARPi therapy. Mechanistically, combined PARGi and oxaliplatin treatment led to persistence of detrimental PARylation, increased expression of cleaved caspase-3, and increased γH2AX foci. In summary, these data validate PARG as a relevant target in PDAC and establish current therapies that synergize with PARGi. SIGNIFICANCE: PARG is a potential target in pancreatic cancer as a single-agent anticancer therapy or in combination with current standard of care.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Glicósido Hidrolasas/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Daño del ADN , Inhibidores Enzimáticos/farmacología , Femenino , Silenciador del Gen , Glicósido Hidrolasas/genética , Humanos , Ratones Desnudos , Terapia Molecular Dirigida , Oxaliplatino/farmacología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Reparación del ADN por Recombinación , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA