Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Altern Med ; 17(1): 336, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651578

RESUMEN

BACKGROUND: Our present study was conducted to characterize the phytoconstituents present in the aqueous extract of Momordica charantia and evaluate the antimicrobial efficacy of silver-extract nanoparticles (Ag-Extract-NPs). METHODS: Silver nanoparticles (AgNPs) were prepared by reducing AgNO3; and NaBH4 served as reducing agent. After screening of phytochemicals; AgNPs and aqueous extract were mixed thoroughly and then coated by polyaniline. These NPs were characterized by using Visual inspection, UV spectroscopy, FTIR, SEM and TEM techniques. Antimicrobial activities were assessed against Staphylococcus aureus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa. RESULTS: Aqueous extract of M. charantia fruits contain alkaloid, phenol, saponin etc. UV-Vis spectrum showed strong absorption peak around 408 nm. The presence of -CH, -NH, -COOH etc. stretching in FTIR spectrum of Ag-Extract-NPs endorsed that AgNPs were successfully capped by bio-compounds. SEM and TEM result revealed that synthesized NPs had particle size 78.5-220 nm. Ag-Extract-NPs showed 34.6 ± 0.8 mm zone of inhibition against E. coli compared to 25.6 ± 0.5 mm for ciprofloxacin. Maximum zone of inhibition for Ag-Extract-NPs were 24.8 ± 0.7 mm, 26.4 ± 0.4 mm, 7.4 ± 0.4 mm for S. aureus, P. aeruginosa and S. typhi. We found that Ag-Extract-NPs have much better antibacterial efficacy than AgNPs and M. charantia extract has individually. It is also noticed that gram negative bacteria (except S. typhi) are more susceptible to Ag-Extract-NPs than gram positive bacteria. CONCLUSION: Ag-Extract-NPs showed strong antibacterial activity. In order to make a reliable stand for mankind, further study is needed to consider determining the actual biochemical pathway by which AgNPs-extracts exert their antimicrobial effect.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Momordica charantia/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/farmacología , Antibacterianos/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Momordica charantia/química , Nanopartículas/química , Nanopartículas/metabolismo , Extractos Vegetales/metabolismo , Plata/química , Plata/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA