Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(16): 7397-7403, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37548595

RESUMEN

Compositional engineering of the optical properties of hybrid organic-inorganic lead halide perovskites is crucial for the realization of efficient solar cells and light-emitting devices. We study the effect of band gap fluctuations on coherent exciton dynamics in a mixed FA0.9Cs0.1PbI2.8Br0.2 perovskite crystal by using photon echo spectroscopy. We reveal a narrow homogeneous exciton line width of 16 µeV at a temperature of 1.5 K. The corresponding exciton coherence time T2 = 83 ps is exceptionally long due to the localization of excitons at the scale of tens to hundreds of nanometers. From spectral and temperature dependences of the two- and three-pulse photon echo decay, we conclude that for low-energy excitons pure decoherence associated with elastic scattering on phonons is comparable with the exciton lifetime, while for excitons with higher energies, inelastic scattering to lower energy states via phonon emission dominates.

2.
Nano Lett ; 21(6): 2370-2375, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33689391

RESUMEN

In a Fe/(Cd,Mg)Te/CdTe quantum well hybrid structure, short-range and long-range ferromagnetic proximity effects are found to coexist. The former is observed for conduction band electrons, while the latter is observed for holes bound to shallow acceptors in the CdTe quantum well. These effects arise from the interaction of charge carriers confined in the quantum well with different ferromagnets, where electrons interact with the Fe film and holes with an interfacial ferromagnet at the Fe/(Cd,Mg)Te interface. The two proximity effects originate from fundamentally different physical mechanisms. The short-range proximity effect for electrons is determined by the overlap of their wave functions with d-electrons of the Fe film. On the contrary, the long-range effect for holes bound to acceptors is not associated with overlapping wave functions and can be mediated by elliptically polarized phonons. The coexistence of the two ferromagnetic proximity effects reveals the presence of a nontrivial spin texture within the same heterostructure.

3.
Adv Sci (Weinh) ; : e2403691, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884160

RESUMEN

Quantum technologic and spintronic applications require reliable material platforms that enable significant and long-living spin polarization of excitations, the ability to manipulate it optically in external fields, and the possibility to implement quantum correlations between spins, i.e., entanglement. Here it is demonstrated that these conditions are met in bulk crystals of lead halide perovskites. A giant optical orientation of 85% of excitons, approaching the ultimate limit of unity, in FA0.9Cs0.1PbI2.8Br0.2 crystals is reported. The exciton spin orientation is maintained during the exciton lifetime of 55 ps resulting in high circular polarization of the exciton emission. The optical orientation is robust to detuning of the excitation energy up to 0.3 eV above the exciton resonance and remains larger than 20% up to detunings of 0.9 eV. It evidences pure chiral selection rules and suppressed spin relaxation of electrons and holes, even with large kinetic energies. The exciton and electron-hole recombinations are distinguished by means of the spin dynamics detected via coherent spin quantum beats in magnetic field. Further, electron-hole spin correlations are demonstrated through linear polarization beats after circularly polarized excitation. These findings are supported by atomistic calculations. All-in-all, the results establish lead halide perovskite semiconductors as suitable platform for quantum technologies.

4.
J Phys Chem Lett ; 15(10): 2893-2903, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38448798

RESUMEN

Coherent spin dynamics of electrons and holes are studied in hybrid organic-inorganic lead halide perovskite FAPbBr3 bulk single crystals using the time-resolved Kerr ellipticity technique at cryogenic temperatures. The Larmor spin precession of the carrier spins in a magnetic field is monitored to measure the Landé g-factors of electrons (+2.44) and holes (+0.41). These g-factors are highly isotropic. The measured spin dephasing times amount to a few nanoseconds, and the longitudinal hole spin relaxation time is 470 ns. The important role of the strong hyperfine interaction between carrier spins and nuclear spins is demonstrated via dynamic nuclear polarization. At low temperatures, electron and hole spin relaxation predominantly occurs via the hyperfine interaction, whose importance significantly decreases at temperatures above 12 K. We overview the spin dynamics in various lead halide perovskite crystals and polycrystalline films and conclude on their common features provided by charge carrier localization at cryogenic temperatures.

5.
Nat Commun ; 11(1): 4130, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807771

RESUMEN

Energy harvesting is a concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles are realized in systems which are heated continuously. We present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a thin ferromagnetic metal layer. The sample is excited by femtosecond laser pulses with a repetition rate of 10 GHz, which results in temperature modulation at the same frequency with amplitude ~0.1 K. The alternating temperature excites magnons in the ferromagnetic nanolayer which are detected by measuring the net magnetization precession. When the magnon frequency is brought onto resonance with the optical excitation, a 12-fold increase of the amplitude of precession indicates efficient resonant heat transfer from the lattice to coherent magnons. The demonstrated principle may be used for energy harvesting in various nanodevices operating at GHz and sub-THz frequency ranges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA