Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 320, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609500

RESUMEN

State-of-the-art chemistry-climate models (CCMs) have indicated that a future decrease in ozone-depleting substances (ODSs) combined with an increase in greenhouse gases (GHGs) would increase the column ozone amount in most regions except the tropics and Antarctic. However, large Arctic ozone losses have occurred at a frequency of approximately once per decade since the 1990s (1997, 2011 and 2020), despite the ODS concentration peaking in the mid-1990s. To understand this, CCMs were used to conduct 24 experiments with ODS and GHG concentrations set based on predicted values for future years; each experiment consisted of 500-member ensembles. The 50 ensemble members with the lowest column ozone in the mid- and high latitudes of the Northern Hemisphere showed a clear ODS dependence associated with low temperatures and a strong westerly zonal mean zonal wind. Even with high GHG concentrations, several ensemble members showed extremely low spring column ozone in the Arctic when ODS concentration remained above the 1980-1985 level. Hence, ODS concentrations should be reduced to avoid large ozone losses in the presence of a stable Arctic polar vortex. The average of the lowest 50 members indicates that GHG increase towards the end of the twenty-first century will not cause worse Arctic ozone depletion.


Asunto(s)
Gases de Efecto Invernadero , Ozono , Ozono/análisis , Frío , Estaciones del Año , Regiones Antárticas
2.
Nat Commun ; 14(1): 3925, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400442

RESUMEN

Water vapor plays an important role in many aspects of the climate system, by affecting radiation, cloud formation, atmospheric chemistry and dynamics. Even the low stratospheric water vapor content provides an important climate feedback, but current climate models show a substantial moist bias in the lowermost stratosphere. Here we report crucial sensitivity of the atmospheric circulation in the stratosphere and troposphere to the abundance of water vapor in the lowermost stratosphere. We show from a mechanistic climate model experiment and inter-model variability that lowermost stratospheric water vapor decreases local temperatures, and thereby causes an upward and poleward shift of subtropical jets, a strengthening of the stratospheric circulation, a poleward shift of the tropospheric eddy-driven jet and regional climate impacts. The mechanistic model experiment in combination with atmospheric observations further shows that the prevailing moist bias in current models is likely caused by the transport scheme, and can be alleviated by employing a less diffusive Lagrangian scheme. The related effects on atmospheric circulation are of similar magnitude as climate change effects. Hence, lowermost stratospheric water vapor exerts a first order effect on atmospheric circulation and improving its representation in models offers promising prospects for future research.

3.
Atmos Chem Phys Discuss ; 19(15): 10087-10110, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632450

RESUMEN

We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between -5.9% and 10.6%. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2-4%) in the tropical belt (30°N-30°S). For the mid-latitudes, we observed a 1.8 to 3.4 % increase in the Southern Hemisphere for RCP 2.6, 4.5 and 6.0, and found a 2.3% decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 to 5.5% for RCP 2.6, 4.5 and 6.0 and they are lower by 7.9% for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does.

4.
Atmos Chem Phys ; 18(21): 16155-16172, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32742283

RESUMEN

Previous multi-model intercomparisons have shown that chemistry-climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC/IGAC (Stratosphere-troposphere Processes and their Role in Climate/International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40-50% in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to ~30% in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2 DU - approximately 33% larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, "SOCOLv3.1", which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8 DU, mostly due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NOx), carbon monoxide, methane and other volatile organic compounds) are responsible for more than 90% of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20% more NOx than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry-climate models.

5.
Atmos Chem Phys ; 18(15): 11277-11287, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32742282

RESUMEN

Major stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Due to their relevance for the troposphere-stratosphere system, several previous studies have focused on their potential response to anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to a decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs, and the impact of large climatological biases in single-model studies. Here we revisit the question of future SSWs changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry Climate Model Initiative. From analyzing future integrations we find no statistically significant change in the frequency of SSWs over the 21st century, irrespective of the metric used for the identification of SSWs. Changes in other SSWs characteristics, such as their duration and the tropospheric forcing, are also assessed: again, we find no evidence of future changes over the 21st century.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA