RESUMEN
Biomedicinally important histone lysine methyltransferases (KMTs) catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) cosubstrate to lysine residues in histones and other proteins. Herein, experimental and computational investigations on human KMT-catalyzed ethylation of histone peptides by using S-adenosylethionine (AdoEth) and Se-adenosylselenoethionine (AdoSeEth) cosubstrates are reported. MALDI-TOF MS experiments reveal that, unlike monomethyltransferases SETD7 and SETD8, methyltransferases G9a and G9a-like protein (GLP) do have the capacity to ethylate lysine residues in histone peptides, and that cosubstrates follow the efficiency trend AdoMet>AdoSeEth>AdoEth. G9a and GLP can also catalyze AdoSeEth-mediated ethylation of ornithine and produce histone peptides bearing lysine residues with different alkyl groups, such as H3K9meet and H3K9me2et. Molecular dynamics and free energy simulations based on quantum mechanics/molecular mechanics potential supported the experimental findings by providing an insight into the geometry and energetics of the enzymatic methyl/ethyl transfer process.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , Biocatálisis , Teoría Funcional de la Densidad , N-Metiltransferasa de Histona-Lisina/química , Humanos , Lisina/química , Conformación Molecular , Simulación de Dinámica MolecularRESUMEN
The biologically important carnitine biosynthesis pathway in humans proceeds via four enzymatic steps. The first step in carnitine biosynthesis is catalyzed by trimethyllysine hydroxylase (TMLH), a non-heme Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase, which catalyzes the stereospecific hydroxylation of (2S)-Nε-trimethyllysine to (2S,3S)-3-hydroxy-Nε-trimethyllysine. Here, we report biocatalytic studies on human TMLH and its 19 variants introduced through site-directed mutagenesis. Amino acid substitutions at the sites involved in binding of the Fe(II) cofactor, 2OG cosubstrate and (2S)-Nε-trimethyllysine substrate provide a basic insight into the binding requirements that determine an efficient TMLH-catalyzed conversion of (2S)-Nε-trimethyllysine to (2S,3S)-3-hydroxy-Nε-trimethyllysine. This work demonstrates the importance of the recognition sites that contribute to the enzymatic activity of TMLH: the Fe(II)-binding H242-D244-H389 residues, R391-R398 involved in 2OG binding and several residues (D231, N334 and the aromatic cage comprised of W221, Y217 and Y234) associated with binding of (2S)-Nε-trimethyllysine.
Asunto(s)
Oxigenasas de Función Mixta/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Carnitina/biosíntesis , Dominio Catalítico/genética , Humanos , Cinética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , gamma-Butirobetaína Dioxigenasa/química , gamma-Butirobetaína Dioxigenasa/genética , gamma-Butirobetaína Dioxigenasa/metabolismoRESUMEN
Gaining a fundamental insight into the biomolecular recognition of posttranslationally modified histones by epigenetic reader proteins is of crucial importance to understanding the regulation of the activity of human genes. Here, we seek to establish whether trimethylthialysine, a simple trimethyllysine analogue generated through cysteine alkylation, is a good trimethyllysine mimic for studies on molecular recognition by reader proteins. Histone peptides bearing trimethylthialysine and trimethyllysine were examined for binding with five human reader proteins employing a combination of thermodynamic analyses, molecular dynamics simulations and quantum chemical analyses. Collectively, our experimental and computational findings reveal that trimethylthialysine and trimethyllysine exhibit very similar binding characteristics for the association with human reader proteins, thereby justifying the use of trimethylthialysine for studies aimed at dissecting the origin of biomolecular recognition in epigenetic processes that play important roles in human health and disease.
Asunto(s)
Cisteína/análogos & derivados , Histonas/química , Lisina/análogos & derivados , Sitios de Unión , Cisteína/síntesis química , Cisteína/química , Epigénesis Genética , Histonas/metabolismo , Humanos , Lisina/síntesis química , Lisina/química , Metilación , Modelos Moleculares , Conformación Molecular , Unión Proteica , Técnicas de Síntesis en Fase Sólida , Relación Estructura-Actividad , TermodinámicaRESUMEN
Biomedicinally important histone lysine methyltransferases (KMTs) transfer a methyl group from S-adenosylmethionine to lysine residues in histones and other proteins. Here, we report comparative studies on epigenetic methylation of lysine and γ-thialysine, the simplest cysteine-derived lysine analog, which can be introduced to histone peptides and histone proteins via site-specific bioconjugation-based cysteine alkylation. Enzyme assays and computational studies demonstrate that human KMTs catalyze efficient methylation of histones that possess γ-thialysine. This work provides a molecular basis for the application of γ-thialysine for biomolecular studies of intact histones and the nucleosome assembly.
Asunto(s)
Cisteína/análogos & derivados , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Cisteína/análisis , Cisteína/metabolismo , Histonas/química , Humanos , Cinética , Lisina/análisis , Metilación , Modelos Moleculares , Especificidad por SustratoRESUMEN
Site-specific incorporation of post-translationally modified amino acids into proteins, including histones, has been a subject of great interest for chemical and biochemical communities. Here, we describe a site-specific incorporation of structurally simplest trimethyllysine analogs into position 4 of the intact histone H3 protein. An efficient alkylation of cysteine 4 of the recombinantly expressed histone H3 provides a panel of trimethyllysine analogs that differ in charge, charge density, sterics, and chain length. We demonstrate that H3 histone that bears trimethyllysine analogs can be further assembled into the octameric histone complex that constitutes the nucleosome. Binding studies showed that H3 histone that possesses trimethyllysine analogs is well recognized by a PHD3 reader domain of human JARID1A. This work provides important (bio)chemical tools for fundamental biomolecular studies aimed at unravelling the molecular basis of the higher order nucleosome and chromatin assemblies.
Asunto(s)
Cisteína/química , Histonas/química , Lisina/análogos & derivados , Alquilación , Animales , Electroforesis en Gel de Poliacrilamida , Histonas/metabolismo , Humanos , Lisina/química , Procesamiento Proteico-Postraduccional , Proteína 2 de Unión a Retinoblastoma/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Xenopus laevisRESUMEN
Histone lysine methyltransferases (KMTs) are biomedicinally important class of epigenetic enzymes that catalyse methylation of lysine residues in histones and other proteins. Enzymatic and computational studies on the simplest lysine analogues that possess a modified main chain demonstrate that the lysine's backbone contributes significantly to functional KMT binding and catalysis.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/química , Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Modelos Moleculares , Estructura Molecular , TermodinámicaRESUMEN
Histone lysine methyltransferases G9a and GLP are validated targets for the development of new epigenetic drugs. Most, if not all, inhibitors of G9a and GLP target the histone substrate binding site or/and the S-adenosylmethionine cosubstrate binding site. Here, we report an alternative approach for inhibiting the methyltransferase activity of G9a and GLP. For proper folding and enzymatic activity, G9a and GLP contain structural zinc fingers, one of them being adjacent to the S-adenosylmethionine binding site. Our work demonstrates that targeting these labile zinc fingers with electrophilic small molecules results in ejection of structural zinc ions, and consequently inhibition of the methyltransferase activity. Very effective Zn(II) ejection and inhibition of G9a and GLP was observed with clinically used ebselen, disulfiram and cisplatin.
Asunto(s)
Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Dedos de Zinc/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-ActividadRESUMEN
A novel synthetic methodology, employing a combination of the strain-promoted azide-alkyne cycloaddition and maleimide-thiol reactions, for the preparation of permethylated ß-cyclodextrin-linker-peptidyl conjugates is reported. Two different bifunctional maleimide cross-linking probes, the polyethylene glycol containing hydrophilic linker bicyclo[6.1.0] nonyne-maleimide and the hydrophobic 5'-dibenzoazacyclooctyne-maleimide, were attached to azide-appended permethylated ß-cyclodextrin. The successfully introduced maleimide function was exploited to covalently graft a cysteine-containing peptide (Ac-Tyr-Arg-Cys-Amide) to produce the target conjugates. The final target compounds were isolated in high purity after purification by isocratic preparative reverse-phase high-performance liquid chromatography. This novel synthetic approach is expected to give access to many different cyclodextrin-linker peptides.
Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Oligopéptidos/química , beta-Ciclodextrinas/química , Alquinos/química , Secuencia de Aminoácidos , Azidas/química , Maleimidas/química , Metilación , Compuestos de Sulfhidrilo/químicaRESUMEN
Trimethyllysine hydroxylase (TMLH) catalyses C-3 hydroxylation of Nε-trimethyllysine in the first step of carnitine biosynthesis in humans. Studies on TMLH have been hampered by the lack of established chemical methods. We report that an Nε-trimethyllysine analogue that contains the fluoromethyl group can be used as a 1H and 19F NMR probe for studies on TMLH catalysis.
Asunto(s)
Lisina/análogos & derivados , Oxigenasas de Función Mixta/metabolismo , Sondas Moleculares/biosíntesis , Biocatálisis , Flúor , Halogenación , Humanos , Lisina/biosíntesis , Lisina/química , Espectroscopía de Resonancia Magnética , Sondas Moleculares/química , Estructura MolecularRESUMEN
Histone lysine methyltransferases (KMTs) play an important role in epigenetic gene regulation and have emerged as promising targets for drug discovery. However, the scope and limitation of KMT catalysis on substrates possessing substituted lysine side chains remain insufficiently explored. Here, we identify new unnatural lysine analogues as substrates for human methyltransferases SETD7, SETD8, G9a and GLP. Two synthetic amino acids that possess a subtle modification on the lysine side chain, namely oxygen at the γ position (KO, oxalysine) and nitrogen at the γ position (KN, azalysine) were incorporated into histone peptides and tested as KMTs substrates. Our results demonstrate that these lysine analogues are mono-, di-, and trimethylated to a different extent by trimethyltransferases G9a and GLP. In contrast to monomethyltransferase SETD7, SETD8 exhibits high specificity for both lysine analogues. These findings are important to understand the substrate scope of KMTs and to develop new chemical probes for biomedical applications.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , Humanos , Metilación , Conformación ProteicaRESUMEN
We report synthesis and enzymatic assays on human histone lysine methyltransferase catalysed methylation of histones that possess lysine and its geometrically constrained analogues containing rigid (E)-alkene (KE), (Z)-alkene (KZ) and alkyne (Kyne) moieties. Methyltransferases G9a and GLP do have a capacity to catalyse methylation in the order K â« KE > KZ â¼ Kyne, whereas monomethyltransferase SETD8 catalyses only methylation of K and KE.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , Alquenos/química , Alquenos/metabolismo , Alquinos/química , Alquinos/metabolismo , Biocatálisis , Humanos , Lisina/análogos & derivados , Lisina/química , Metilación , Conformación MolecularRESUMEN
Heterochromatin Protein 1 (HP1) is a major regulator of chromatin structure and function. In animals, the network of proteins interacting with HP1 is mainly associated with constitutive heterochromatin marked by H3K9me3. HP1 physically interacts with the putative ortholog of the SNF2 chromatin remodeler ATRX, which controls deposition of histone variant H3.3 in mammals. In this study, we show that the Arabidopsis thaliana ortholog of ATRX participates in H3.3 deposition and possesses specific conserved domains in plants. We found that plant Like HP1 (LHP1) protein interacts with ATRX through domains that evolved specifically in land plant ancestors. Loss of ATRX function in Arabidopsis affects the expression of a limited subset of genes controlled by PRC2 (POLYCOMB REPRESSIVE COMPLEX 2), including the flowering time regulator FLC. The function of ATRX in regulation of flowering time requires novel LHP1-interacting domain and ATPase activity of the ATRX SNF2 helicase domain. Taken together, these results suggest that distinct evolutionary pathways led to the interaction between ATRX and HP1 in mammals and its counterpart LHP1 in plants, resulting in distinct modes of transcriptional regulation.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Histonas/metabolismo , Complejo Represivo Polycomb 2 , Proteínas Represoras/genéticaRESUMEN
Histone Nε-lysine methylation is a widespread posttranslational modification that is specifically recognised by a diverse class of Nε-methyllysine binding reader proteins. Combined thermodynamic data, molecular dynamics simulations, and quantum chemical studies reveal that reader proteins efficiently bind trimethylornithine and trimethylhomolysine, the simplest Nε-trimethyllysine analogues that differ in the length of the side chain.
Asunto(s)
Proteínas Portadoras/química , Epigénesis Genética , Histonas/química , Lisina/análogos & derivados , Fragmentos de Péptidos/química , Proteínas Portadoras/genética , Histonas/genética , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Ornitina/análogos & derivados , Fragmentos de Péptidos/genética , Unión Proteica , Teoría Cuántica , TermodinámicaRESUMEN
Trimethyllysine hydroxylase (TMLH) is an Fe(II) and 2-oxoglutarate (2OG) dependent oxygenase involved in the biomedically important carnitine biosynthesis pathway. A combination of synthetic and NMR studies provides direct evidence that human TMLH catalyzes the stereoselective conversion of (2S)-Nε-trimethyllysine to (2S,3S)-3-hydroxy-Nε-trimethyllysine.
Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Biocatálisis , Carnitina , Humanos , Lisina/análogos & derivados , Estructura MolecularRESUMEN
Histone lysine methylation is regulated by Nε-methyltransferases, demethylases, and Nε-methyl lysine binding proteins. Thermodynamic, catalytic and computational studies were carried out to investigate the interaction of three epigenetic protein classes with synthetic histone substrates containing l- and d-lysine residues. The results reveal that out of the three classes, Nε-methyl lysine binding proteins are superior in accepting lysines with the d-configuration.
Asunto(s)
Epigénesis Genética/genética , Histona Demetilasas/metabolismo , Lisina/química , Metiltransferasas/metabolismo , Biocatálisis , Histona Demetilasas/genética , Lisina/metabolismo , Metilación , Metiltransferasas/genética , Modelos Moleculares , Conformación Molecular , Estereoisomerismo , TermodinámicaRESUMEN
Trimethyllysine hydroxylase (TMLH) is a non-haem Fe(ii) and 2-oxoglutarate dependent oxygenase that catalyses the C-3 hydroxylation of an unactivated C-H bond in l-trimethyllysine in the first step of carnitine biosynthesis. The examination of trimethyllysine analogues as substrates for human TMLH reveals that the enzyme does hydroxylate substrates other than natural l-trimethyllysine.