Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894053

RESUMEN

The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.


Asunto(s)
Electrodos , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Dimetilpolisiloxanos/química , Espectroscopía Dieléctrica , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Impedancia Eléctrica , Glicerol/química , Fenómenos Electrofisiológicos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
2.
Drug Metab Dispos ; 51(10): 1332-1341, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524543

RESUMEN

Ipatasertib (GDC-0068) is a potent, highly selective, small-molecule inhibitor of protein kinase B (Akt) being developed by Genentech/Roche as a single agent and in combination with other therapies for the treatment of cancers. To fully understand the absorption, metabolism, and excretion of ipatasertib in humans, an open-label study using 14C-radiolabeled ipatasertib was completed to characterize the absolute bioavailability (period 1) and mass balance and metabolite profiling (period 2). In period 1, subjects were administered a 200 mg oral dose of ipatasertib followed by an 80 µg (800 nCi) intravenous dose of [14C]-ipatasertib. In period 2, subjects received a single oral dose containing approximately 200 mg (100 µCi) [14C]-ipatasertib. In an integrated analytical strategy, accelerator mass spectrometry was applied to measure the 14C microtracer intravenous pharmacokinetics in period 1 and fully profile plasma radioactivity in period 2. The systemic plasma clearance and steady-state volume of distribution were 98.8 L/h and 2530 L, respectively. The terminal half-lives after oral and intravenous administrations were similar (26.7 and 27.4 hours, respectively) and absolute bioavailability of ipatasertib was 34.0%. After a single oral dose of [14C]-ipatasertib, 88.3% of the administered radioactivity was recovered with approximately 69.0% and 19.3% in feces and urine, respectively. Radioactivity in feces and urine was predominantly metabolites with 24.4% and 8.26% of dose as unchanged parent, respectively; indicating that ipatasertib had been extensively absorbed and hepatic metabolism was the major route of clearance. The major metabolic pathway was N-dealkylation mediated by CYP3A, and minor pathways were oxidative by cytochromes P450 and aldehyde oxidase. SIGNIFICANCE STATEMENT: The study provided definitive information regarding the absolute bioavailability and the absorption, metabolism, and excretion pathways of ipatasertib, a potent, novel, and highly selective small-molecule inhibitor of protein kinase B (Akt). An ultrasensitive radioactive counting method, accelerator mass spectrometry was successfully applied for 14C-microtracer absolute bioavailability determination and plasma metabolite profiling.


Asunto(s)
Piperazinas , Proteínas Proto-Oncogénicas c-akt , Humanos , Disponibilidad Biológica , Proteínas Proto-Oncogénicas c-akt/análisis , Tasa de Depuración Metabólica , Heces/química , Administración Oral
3.
J Sep Sci ; 45(12): 2055-2063, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35108448

RESUMEN

Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.


Asunto(s)
Medición de Intercambio de Deuterio , Hidrógeno , Deuterio/química , Deuterio/metabolismo , Medición de Intercambio de Deuterio/métodos , Hidrógeno/química , Rayos Láser , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Molecules ; 26(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34834080

RESUMEN

Cardiovascular diseases (CVDs) are one of the foremost causes of mortality in intensive care units worldwide. The development of a rapid method to quantify cardiac troponin I (cTnI)-the gold-standard biomarker of myocardial infarction (MI) (or "heart attack")-becomes crucial in the early diagnosis and treatment of myocardial infarction (MI). This study investigates the development of an efficient fluorescent "sandwich" immunoassay using liposome-based fluorescent signal amplification and thereby enables the sensing and quantification of serum-cTnI at a concentration relevant to clinical settings. The calcein-loaded liposomes were utilized as fluorescent nano vehicles, and these have exhibited appropriate stability and efficient fluorescent properties. The standardized assay was sensitive and selective towards cTnI in both physiological buffer solutions and spiked human serum samples. The novel assay presented noble analytical results with sound dynamic linearity over a wide concentration range of 0 to 320 ng/mL and a detection limit of 6.5 ng/mL for cTnI in the spiked human serum.


Asunto(s)
Liposomas/química , Infarto del Miocardio/sangre , Troponina I/sangre , Biomarcadores/sangre , Diagnóstico Precoz , Fluoresceínas/química , Humanos , Inmunoensayo
5.
Molecules ; 26(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443402

RESUMEN

Cardiovascular diseases are considered one of the major causes of human death globally. Myocardial infarction (MI), characterized by a diminished flow of blood to the heart, presents the highest rate of morbidity and mortality among all other cardiovascular diseases. These fatal effects have triggered the need for early diagnosis of appropriate biomarkers so that countermeasures can be taken. Cardiac troponin, the central key element of muscle regulation and contraction, is the most specific biomarker for cardiac injury and is considered the "gold standard". Due to its high specificity, the measurement of cardiac troponin levels has become the predominant indicator of MI. Various forms of diagnostic methods have been developed so far, including chemiluminescence, fluorescence immunoassay, enzyme-linked immunosorbent assay, surface plasmon resonance, electrical detection, and colorimetric protein assays. However, fluorescence-based immunoassays are considered fast, accurate and most sensitive of all in the determination of cardiac troponins post-MI. This review represents the strategies, methods and levels of detection involved in the reported fluorescence-based immunoassays for the detection of cardiac troponin I.


Asunto(s)
Biomarcadores/sangre , Inmunoensayo , Infarto del Miocardio/sangre , Troponina I/aislamiento & purificación , Fluorescencia , Humanos , Infarto del Miocardio/diagnóstico , Troponina I/sangre
6.
J Water Health ; 18(5): 843-848, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33095205

RESUMEN

The outbreak of coronavirus (COVID-19) has led to a broad use of chemical disinfectants in order to sterilize public spaces and prevent contamination. This paper surveys the chemicals that are effective in deactivating the virus and their mode of action. It presents the different chemical classes of disinfectants and identifies the chemical features of these compounds that pertain to their biocidal activity, relevant to surface/water disinfection.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , COVID-19 , Desinfectantes/farmacología , Humanos , SARS-CoV-2
7.
J Am Chem Soc ; 141(22): 8969-8980, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31072101

RESUMEN

This Article describes the relationship between molecular structure, and the rectification of tunneling current, in tunneling junctions based on self-assembled monolayers (SAMs). Molecular dipoles from simple organic functional groups (amide, urea, and thiourea) were introduced into junctions with the structure AgTS/S(CH2) nR(CH2) mCH3//Ga2O3/EGaIn. Here, R is an n-alkyl fragment (-CH2-)2 or 3, an amide group (either -CONH- or -NHCO-), a urea group (-NHCONH-), or a thiourea group (-NHCSNH-). The amide, urea, or thiourea groups introduce a localized electric dipole moment into the SAM and change the polarizability of that section of the SAM, but do not produce large, electronically delocalized groups or change other aspects of the tunneling barrier. This local change in electronic properties correlates with a statistically significant, but not large, rectification of current ( r+) at ±1.0 V (up to r+ ≈ 20). The results of this work demonstrate that the simplest form of rectification of current at ±1.0 V, in EGaIn junctions, is an interfacial effect, and is caused by a change in the work function of the SAM-modified silver electrode due to the proximity of the dipole associated with the amide (or related) group, and not to a change in the width or mean height of the tunneling barrier.

8.
J Nanosci Nanotechnol ; 16(2): 1410-4, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27433596

RESUMEN

Folic acid (FA) is one of the most utilized moieties in active (ligand) drug delivery. The folate receptor is widely expressed on the surface of several cell lines and tumors; including ovarian, brain, kidney, breast, and lung cancers. During our previous experiments with Doxorubicin (Dox) encapsulated in folate-targeted micelles, we found that flow cytometry underestimated the amount of drug that accu- mulates inside cells. We attributed this effect to the quenching of Dox by FA and herein investigate this phenomenon in an attempt to obtain a correction factor that could be applied to the fluorescence of Dox in the presence of FA. Initially, we examine the effect of pH on the fluorescence spectra of FA, Dox, equimolar solutions of FA and Dox in water, HCI (0.1 M), and NaOH (0.1 M) solutions. We then measure the effect of the gradual increase of FA concentration on the fluorescence intensity of Dox in phosphate-buffered saline (PBS) solutions (pH of 7.4). Using the Stern-Volmer equation, we estimate the association constant of FA-Dox to be K(SV) = 1.5 x 10(4) M(-1). Such an association constant indicates that at the concentrations of FA used in targeted drug delivery systems, a significant concentration of Dox exists as FA-Dox complexes with a quenched fluorescence. Therefore, we conclude that when Dox is used in FA-active drug delivery systems, a correction factor is needed to predict the correct fluorescence intensity of agent in vitro and in vivo.


Asunto(s)
Doxorrubicina/química , Ácido Fólico/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Espectrometría de Fluorescencia
9.
Angew Chem Int Ed Engl ; 54(49): 14743-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26450132

RESUMEN

This work examines charge transport (CT) through self-assembled monolayers (SAMs) of oligoglycines having an N-terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n-alkanethiolates). Comparisons of rates of charge transport-using junctions with the structure Au(TS)/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high-energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).

10.
R Soc Open Sci ; 11(4): 231755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38633350

RESUMEN

This study focuses on the development of antimicrobial fibres for use in medical and healthcare textile industries. Carbon dots (CDs) were designed with boronic acid groups for the attachment to cellulose fibres found in cotton textiles and to enhance their attachment to glycogens on bacterial surfaces. Boronic acid-based and curcumin-based CDs were prepared and characterized using various techniques, showing a nanoscale size and zeta potential values. The CDs inhibited the growth of both Staphylococcus epidermidis and Escherichia coli bacteria, with UV-activated CDs demonstrating improved antibacterial activity. The antimicrobial activity of the CDs was then tested, revealing strong adherence to cellulose paper fibres with no CD diffusion and potent inhibition of bacterial growth. Cytotoxicity assays on human cell lines showed no toxicity towards cells at concentrations of up to 100 µg ml-1 but exhibited increased toxicity at concentrations exceeding 1000 µg ml-1. However, CD-modified cellulose paper fibres showed no toxicity against human cell lines, highlighting the antimicrobial properties of the CD-modified cellulose fibres are safe for human use. These findings show promising potential for applications in both industrial and clinical settings.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39326045

RESUMEN

Posttranslational modifications (PTMs) are potential critical quality attributes in biotherapeutic development, as they can affect drug efficacy and safety. Tyrosine sulfation plays a critical role in protein-protein interactions and has been found on many surface receptors as well as antibody complementarity-determining regions (CDR). However, the presence and function of tyrosine sulfation in therapeutic proteins have not been broadly investigated due to difficulties in detecting the modification. Here, we establish an integrated strategy to identify tyrosine sulfation in biotherapeutic proteins. In silico prediction was used to estimate possible modification sites, followed by the elucidation with intact LCMS and native SCX-MS. The combination of these three steps takes less than 1 h, which provides quick and confident preliminary detection of potential CQAs. Taking NB1 as an example, three +80 Da mass shifts were observed from intact mass analysis and three acidic peaks were monitored by SCX, allowing confirmation of modification as either phosphorylation or sulfation. Peptide mapping, Fe3+-IMAC enrichment, and dephosphorylation were further conducted to provide improved signal intensity and differentiation of modification such as sulfation or phosphorylation. With this integrated strategy, we were able to identify for the first time both tyrosine sulfation and serine phosphorylation in one therapeutic protein.

12.
Nanomaterials (Basel) ; 14(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39269094

RESUMEN

A viable tactic to effectively address the climate crisis is the production of renewable fuels via photocatalytic reactions using solar energy and available resources like carbon dioxide (CO2) and water. Organic polymer material-based photocatalytic materials are thought to be one way to convert solar energy into valuable chemicals and other solar fuels. The use of porous organic polymers (POPs) for CO2 fixation and capture and sequestration to produce beneficial compounds to reduce global warming is still receiving a lot of interest. Visible light-responsive organic photopolymers that are functionally designed and include a large number of heteroatoms and an extended π-conjugation allow for the generation of photogenerated charge carriers, improved absorption of visible light, increased charge separation, and decreased charge recombination during photocatalysis. Due to their rigid structure, high surface area, flexible pore size, permanent porosity, and adaptability of the backbone for the intended purpose, POPs have drawn more and more attention. These qualities have been shown to be highly advantageous for numerous sustainable applications. POPs may be broadly categorized as crystalline or amorphous according to how much long-range order they possess. In terms of performance, conducting POPs outperform inorganic semiconductors and typical organic dyes. They are light-harvesting materials with remarkable optical characteristics, photostability, cheap cost, and low cytotoxicity. Through cocatalyst loading and morphological tweaking, this review presents optimization options for POPs preparation techniques. We provide an analysis of the ways in which the preparative techniques will affect the materials' physicochemical characteristics and, consequently, their catalytic activity. An inventory of experimental methods is provided for characterizing POPs' optical, morphological, electrochemical, and catalytic characteristics. The focus of this review is to thoroughly investigate the photochemistry of these polymeric organic photocatalysts with an emphasis on understanding the processes of internal charge generation and transport within POPs. The review covers several types of amorphous POP materials, including those based on conjugated microporous polymers (CMPs), inherent microporosity polymers, hyper-crosslinked polymers, and porous aromatic frameworks. Additionally, common synthetic approaches for these materials are briefly discussed.

13.
J Am Chem Soc ; 135(41): 15579-84, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24044696

RESUMEN

The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamide ligands with different patterns of fluorination--that we use to define enthalpy/entropy (H/S) compensation in this system thermodynamically and structurally. The binding affinities of these ligands (with the exception of one ligand, in which the deviation is understood) to HCA are, despite differences in fluorination pattern, indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and entropy of binding. Analysis reveals that differences in the structure and thermodynamic properties of the waters surrounding the bound ligands are an important contributor to the observed H/S compensation. These results support the hypothesis that the molecules of water filling the active site of a protein, and surrounding the ligand, are as important as the contact interactions between the protein and the ligand for biomolecular recognition, and in determining the thermodynamics of binding.


Asunto(s)
Benzotiazoles/química , Anhidrasas Carbónicas/química , Sulfonamidas/química , Agua/química , Sitios de Unión , Anhidrasas Carbónicas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Termodinámica
14.
Antibiotics (Basel) ; 12(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37237778

RESUMEN

All currently approved antibiotics are being met by some degree of resistance by the bacteria they target. Biofilm formation is one of the crucial enablers of bacterial resistance, making it an important bacterial process to target for overcoming antibiotic resistance. Accordingly, several drug delivery systems that target biofilm formation have been developed. One of these systems is based on lipid-based nanocarriers (liposomes), which have shown strong efficacy against biofilms of bacterial pathogens. Liposomes come in various types, namely conventional (charged or neutral), stimuli-responsive, deformable, targeted, and stealth. This paper reviews studies employing liposomal formulations against biofilms of medically salient gram-negative and gram-positive bacterial species reported recently. When it comes to gram-negative species, liposomal formulations of various types were reported to be efficacious against Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and members of the genera Klebsiella, Salmonella, Aeromonas, Serratia, Porphyromonas, and Prevotella. A range of liposomal formulations were also effective against gram-positive biofilms, including mostly biofilms of Staphylococcal strains, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus subspecies bovis, followed by Streptococcal strains (pneumonia, oralis, and mutans), Cutibacterium acnes, Bacillus subtilis, Mycobacterium avium, Mycobacterium avium subsp. hominissuis, Mycobacterium abscessus, and Listeria monocytogenes biofilms. This review outlines the benefits and limitations of using liposomal formulations as means to combat different multidrug-resistant bacteria, urging the investigation of the effects of bacterial gram-stain on liposomal efficiency and the inclusion of pathogenic bacterial strains previously unstudied.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38082587

RESUMEN

Flexible electrodes are becoming a topic of interest for a range of applications including implantation. They can be used for neural signal recording and for electrical stimulation of atrophying muscles. Unlike the traditionally used metal electrodes that are harsh to the body's tissues, flexible electrodes conduct electricity while preserving the delicate tissues. Polydimethylsiloxane (PDMS), a non-conductive synthetic polymer characterized by its flexibility, low cost, biocompatibility, and durability during implantation, has been explored as a matrix for flexible electrodes. This study reports the synthesis of composite boronic acid-modified carbon dots (BA-CDs)/PDMS electrode materials. The performance of the composite electrode is evaluated electrochemically (for its conductivity and charge storage capacity) and mechanically (Young's modulus). Furthermore, the effect of increasing the PDMS crosslinking density on the electrode's performance is studied based on the hypothesis that a higher crosslinking will bring the BA-CDs closer together, thereby facilitating the movement of electrons. Results of this study showed that incorporating 10% BA-CDs dispersed with 16% glycerol in 74% PDMS with a higher crosslinking density resulted in a bulk impedance of 47.7 Ω and a conductivity of 2.68×10-3 S/cm, both of which surpassed that of the same composition with lower crosslinking. The synthesized flexible electrode material was capable of charge storage although the charge storage capacity (0.00365 mC/cm2) was lower than the safe limit for some tissue activation. Furthermore, the electrode maintained a modulus of elasticity (0.2322 MPa) that is compatible with biological soft tissues.Clinical Relevance- This study reports a conductive electrode that has a flexibility compatible with that of biological tissues for future purposes such as neural signal recording and tissue electrical stimulation (e.g. atrophying muscles). The reported BA-CD/PDMS electrode overcomes the limitations of the harsh metals previously used as implantable electrodes that harm the biological tissues due to their high rigidity.


Asunto(s)
Carbono , Polímeros , Conductividad Eléctrica , Electrodos Implantados , Impedancia Eléctrica , Metales
16.
J Pharm Sci ; 112(11): 2778-2782, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37478972

RESUMEN

Biological therapeutics are major contributors to the pharmaceutical pipeline and continue to grow in sales and scope. Additionally, the field's understanding of cancer biology has advanced such that biopharmaceuticals can harness the power of the immune system for oncology treatments. Several of these novel therapeutics are engineered versions of naturally occurring proteins designed to improve therapeutic properties including potency, target engagement and half-life extension. Cytokines, such as interferons and interleukins, are a broad class of signaling proteins which modulate the body's immune response; engineered cytokines have entered the clinic as promising new immuno-oncology therapies. While these therapies hold great promise, their additional structural complexity introduces analytical challenges, and traditional analytical platforms may be ill-suited to effectively assess product development risks. Further, the pharmaceutical industry relies on streamlining approaches for high-throughput experimentation to achieve speed and efficiency for the discovery and development of new modalities. These demands necessitate the use of state-of-the-art techniques to rapidly characterize these new modalities and guide process development and optimization. Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) is a rapid, sensitive and automatable technique amenable for high-throughput analysis of proteins. In this work, we have developed an automated MALDI-MS platform to prepare, acquire and analyze molecular degradation in engineered PEGylated cytokines formulation samples. This orthogonal technique integrated seamlessly with current developability risk assessment workflows, ultimately enabling selection of a final formulation strategy for clinical development.

17.
J Control Release ; 351: 476-503, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36170926

RESUMEN

With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).


Asunto(s)
Nanopartículas , Neoplasias , Animales , Nanogeles , Sistemas de Liberación de Medicamentos/métodos , Endocitosis , Neoplasias/tratamiento farmacológico
18.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296896

RESUMEN

With the urgent need for bio-nanomaterials to improve the currently available cancer treatments, gold nanoparticle (GNP) hybrid nanostructures are rapidly rising as promising multimodal candidates for cancer therapy. Gold nanoparticles (GNPs) have been hybridized with several nanocarriers, including liposomes and polymers, to achieve chemotherapy, photothermal therapy, radiotherapy, and imaging using a single composite. The GNP nanohybrids used for targeted chemotherapy can be designed to respond to external stimuli such as heat or internal stimuli such as intratumoral pH. Despite their promise for multimodal cancer therapy, there are currently no reviews summarizing the current status of GNP nanohybrid use for cancer theragnostics. Therefore, this review fulfills this gap in the literature by providing a critical analysis of the data available on the use of GNP nanohybrids for cancer treatment with a specific focus on synergistic approaches (i.e., triggered drug release, photothermal therapy, and radiotherapy). It also highlights some of the challenges that hinder the clinical translation of GNP hybrid nanostructures from bench to bedside. Future studies that could expedite the clinical progress of GNPs, as well as the future possibility of improving GNP nanohybrids for cancer theragnostics, are also summarized.

19.
Sci Rep ; 12(1): 2638, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173259

RESUMEN

The capture and safe storage of radioactive iodine (129I or 131I) are of a compelling significance in the generation of nuclear energy and waste storage. Because of their physiochemical properties, Porous Organic Polymers (POPs) are considered to be one of the most sought classes of materials for iodine capture and storage. Herein, we report on the preparation and characterization of two triazine-based, nitrogen-rich, porous organic polymers, NRPOP-1 (SABET = 519 m2 g-1) and NRPOP-2 (SABET = 456 m2 g-1), by reacting 1,3,5-triazine-2,4,6-triamine or 1,4-bis-(2,4-diamino-1,3,5-triazine)-benzene with thieno[2,3-b]thiophene-2,5-dicarboxaldehyde, respectively, and their use in the capture of volatile iodine. NRPOP-1 and NRPOP-2 showed a high adsorption capacity of iodine vapor with an uptake of up to 317 wt % at 80 °C and 1 bar and adequate recyclability. The NRPOPs were also capable of removing up to 87% of iodine from 300 mg L-1 iodine-cyclohexane solution. Furthermore, the iodine-loaded polymers, I2@NRPOP-1 and I2@NRPOP-2, displayed good antibacterial activity against Micrococcus luteus (ML), Escherichia coli (EC), and Pseudomonas aeruginosa (PSA). The synergic functionality of these novel polymers makes them promising materials to the environment and public health.


Asunto(s)
Antibacterianos , Almacenaje de Medicamentos/métodos , Radioisótopos de Yodo , Compuestos Orgánicos , Polímeros , Porosidad , Triazinas , Adsorción , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Micrococcus luteus/efectos de los fármacos , Nitrógeno , Compuestos Orgánicos/farmacología , Polímeros/farmacología , Triazinas/farmacología , Volatilización
20.
Anal Chim Acta ; 1225: 340234, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36038238

RESUMEN

Peptide therapeutics are a growing modality in the pharmaceutical industry and expanding these therapeutics to hit intracellular targets would require establishing cell permeability. Rapid measurement target-agnostic cell permeability of peptides is still analytically challenging. In this study, we demonstrate the development of a rapid high-throughput label-free methodology based on a MALDI-hydrogen-deuterium exchange mass spectrometry (MALDI-HDX-MS) approach to rank-order peptide cell membrane permeability using live THP-1 and AsPc-1 cells. Peptides were incubated in the presence of live cells and their permeability into the cells over time was measured by MALDI-HDX-MS. A differential hydrogen-deuterium exchange approach was used to distinguish the peptides outside of the cells from those inside. The peptides on the outside of the cells were labeled using sufficiently short exposure to deuterium oxide, while the peptides inside of the cells were protected from labeling as a result of permeation into the cells. The deuterium labeled and peak area ratios of unlabeled peptides were compared and plotted over time. The developed methodology, referred to as Cell-based Approach Membrane Permeability Assay (CAMPA), was applied to study an array of 24 diverse peptides including cell-penetrating peptides, stapled and macrocyclic peptides. The cell membrane permeability results observed by CAMPA were corroborated by previously reported in literature data. The CAMPA MALDI-MS analysis was fully automated including MS data processing using internally developed Python scripts. Moreover, CAMPA was demonstrated to be useful for differentiating passive and active cell transportation by using an endocytosis inhibitor in cell incubation media for selected peptides.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Permeabilidad de la Membrana Celular , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Hidrógeno/química , Péptidos , Permeabilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA