Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Saudi Pharm J ; 29(3): 223-235, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33981171

RESUMEN

The long-term objective of the present study was to prepare, physicochemically characterize and determine the anticancer of clausenidin/hydroxypropyl-ß-cyclodextrin (Clu/HPßCD) inclusion complex. We used differential scanning calorimetry, X-ray diffractometer, fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer and 13C and 1H nuclear magnetic resonance followed by in vitro anticancer assays. The orientation and intermolecular interactions of Clausenidin within cyclodextrin cavity were also ascertained by molecular docking simulation accomplished by AutoDock Vina. The guest molecule was welcomed by the hydrophobic cavity of the host molecule and sustained by hydrogen bond between host/guest molecules. The constant drug release with time, and increased solubility were found after successful complexation with HPßCD as confirmed by physicochemical characterizations. Clausenidin had greater cytotoxic effect on colon cancer HT29 cells when incorporated into HPßCD cavity than dissolved in DMSO. Also, from a comparison of cell viability between normal and cancer cells, a reduced side effect was observed. The Clu/HPßCD inclusion complex triggered reactive oxygen species-mediated cytotoxicity in HT29 cells. The inclusion complex-treated HT29 cells showed cell cycle arrest and death by apoptosis associated with caspases activation. The presence of HPßCD seems to aid the anticancer activity of clausenidin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA