Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Plant Biol ; 24(1): 115, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365582

RESUMEN

Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Raphanus , Contaminantes del Suelo , Cromo , Clorofila A , Ecosistema , Carbón Orgánico , Suelo/química
2.
Environ Res ; 248: 118278, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246297

RESUMEN

Biomedical applications for various types of nanoparticles are emerging on a daily basis. Hence this research was performed to evaluate the antifungal (Aspergillus sp., Alternaria sp., Trichophyton sp., Candida sp., and Penicillium sp.), cytotoxicity (MCF10A cell lines), and antioxidant (DPPH) potential of Coleus aromaticus mediated and pre-characterized TiO2NPs were studied with respective standard methodology. Interestingly, the TiO2NPs exhibited significant antifungal activity on pathogenic fungal strains like Alternaria sp., Aspergillus sp. (31 ± 1.4), Penicillium sp. (31 ± 1.9) Trichophyton sp. (27 ± 2.1), and Candida sp. (26 ± 2.3) at high concentration (250 µg mL-1). However, the considerable levels of zone of inhibitions on fungal pathogens were recorded at 100 µg mL-1 of TiO2NPs as well as it was considerably greater than positive control. It also demonstrated dose based anti-inflammatory and antidiabetic activities. The plant-mediated TiO2NPs demonstrated a maximum DPPH scavenging efficiency of 91% at a dosage of 250 µg mL-1, comparable to the positive control's 94%. Furthermore, TiO2NPs at 100 µg mL-1 concentration did not cause cytotoxicity in MCF10A cell lines. At higher concentrations (250 µg mL-1), the nanoparticles showed the lowest cytotoxicity (17%). These findings suggest that C. aromaticus-mediated TiO2NPs have significant biomedical applications. However, in-vivo studies are needed to learn more about their (C. aromaticus-mediated TiO2NPs) potential biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Antifúngicos , Antioxidantes , Aspergillus , Línea Celular , Nanopartículas del Metal/química
3.
Biomed Chromatogr ; 38(8): e5901, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38816948

RESUMEN

Oral bioavailability of glibenclamide (Glb) was appreciably improved by the formation of an amorphous solid dispersion with Poloxamer-188 (P-188). Poloxamer-188 substantially enhanced the solubility and thereby the dissolution rate of the biopharmaceutics classification system (BCS) class II drug Glb and simultaneously exhibited a better stabilizing effect of the amorphous solid dispersion prepared by the solvent evaporation method. The physical state of the dispersed Glb in the polymeric matrix was characterized by differential scanning calorimetry, X-ray diffraction, scanning electron microscope and Fourier transform infrared studies. In vitro drug release in buffer (pH 7.2) revealed that the amorphous solid dispersion at a Glb-P-188 ratio of 1:6 (SDE4) improved the dissolution of Glb by 90% within 3 h. A pharmacokinetic study of the solid dispersion formulation SDE4 in Wistar rats showed that the oral bioavailability of the drug was greatly increased as compared with the market tablet formulation, Daonil®. The formulation SDE4 resulted in an AUC0-24h ~2-fold higher. The SDE4 formulation was found to be stable during the study period of 6 months.


Asunto(s)
Disponibilidad Biológica , Gliburida , Poloxámero , Ratas Wistar , Animales , Gliburida/farmacocinética , Gliburida/química , Gliburida/sangre , Gliburida/administración & dosificación , Ratas , Masculino , Poloxámero/química , Poloxámero/farmacocinética , Estabilidad de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos , Rastreo Diferencial de Calorimetría , Solubilidad
4.
J Environ Manage ; 356: 120566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520854

RESUMEN

Quiescent batch experiments were conducted to evaluate the influences of Cl-, F-, HCO3-, HPO42-, and SO42- on the reactivity of metallic iron (Fe0) for water remediation using the methylene blue (MB) method. Strong discoloration of MB indicates high availability of solid iron corrosion products (FeCPs). Tap water was used as an operational reference. Experiments were carried out in graduated test tubes (22 mL) for up to 45 d, using 0.1 g of Fe0 and 0.5 g of sand. Operational parameters investigated were (i) equilibration time (0-45 d), (ii) 4 different types of Fe0, (iii) anion concentration (10 values), and (iv) use of MB and Orange II (O-II). The degree of dye discoloration, the pH, and the iron concentration were monitored in each system. Relative to the reference system, HCO3- enhanced the extent of MB discoloration, while Cl-, F-, HPO42-, and SO42- inhibited it. A different behavior was observed for O-II discoloration: in particular, HCO3- inhibited O-II discoloration. The increased MB discoloration in the HCO3- system was justified by considering the availability of FeCPs as contaminant scavengers, pH increase, and contact time. The addition of any other anion initially delays the availability of FeCPs. Conflicting results in the literature can be attributed to the use of inappropriate experimental conditions. The results indicate that the application of Fe0-based systems for water remediation is a highly site-specific issue which has to include the anion chemistry of the water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Hierro , Agua , Aniones , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
5.
J Environ Manage ; 356: 120556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537457

RESUMEN

Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.


Asunto(s)
Ecosistema , Especies Introducidas , Suelo/química , Carbono , Biodiversidad , Plantas , Microbiología del Suelo
6.
Front Physiol ; 15: 1357411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496298

RESUMEN

Chemical insecticides are effective at controlling mosquito populations, but their excessive use can pollute the environment and harm non-target organisms. Mosquitoes can also develop resistance to these chemicals over time, which makes long-term mosquito control efforts challenging. In this study, we assessed the phytochemical, biochemical, and insecticidal properties of the chemical constituents of cajeput oil. Results show that Melaleuca cajuputi essential oil may exhibit mosquito larvicidal properties against Anopheles stephensi larvae (second-fourth instar) at 24 h post-treatment. At 24 h post-exposure, the essential oil resulted in a significant decrease in detoxifying enzymes. All of these findings indicate that cajeput oil infects An. stephensi larvae directly affect the immune system, leading to decreased immune function. Cajeput oil significantly affects the second, third, and fourth instar larvae of An. stephensi, according to the bioassay results. Cajeput oil does not induce toxicity in non-target Eudrilus eugeniae earthworm species, as indicated by a histological study of earthworms. Phytochemical screening and GC-MS analysis of the essential oil revealed the presence of several major phytochemicals that contribute to mosquito larvicidal activity. The importance of cajeput oil as an effective candidate for biological control of the malarial vector An. stephensi is supported by this study.

7.
Environ Pollut ; 347: 123760, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492754

RESUMEN

In this study, we focused on fabrication of porous ultra-thin ZnO nanosheet (PUNs)/CuCo2S4 quantum dots (CCS QDs) for visible light-driven photodegradation of rifampicin (RIF) and Cr(VI) reduction. The morphology, structural, optical and textural properties of fabricated photocatalyst were critically analyzed with different analytical and spectroscopic techniques. An exceptionally high RIF degradation (99.97%) and maximum hexavalent Cr(VI) reduction (96.17%) under visible light was achieved at 10 wt% CCS QDs loaded ZnO, which is 213% and 517% greater than bare ZnO PUNs. This enhancement attributed to the improved visible light absorption, interfacial synergistic effect, and high surface-rich active sites. Extremely high generation of ●OH attributed to the spin-orbit coupling in ZnO PUNs@CCS QDs and the existence of oxygen vacancies. Besides, the ZnOPUNs@CCS QDs, forming Z-scheme heterojunctions, enhanced the separation of photogenerated charge carriers. We investigated the influencing factors such as pH, inorganic ions, catalyst dosage and drug dosage on the degradation process. More impressively, a stable performance of ZnO PUNs@CCS QDs obtained even after six consecutive degradation (85.9%) and Cr(VI) reduction (67.7%) cycles. Furthermore, the toxicity of intermediates produced during the photodegradation process were assessed using ECOSAR program. This work provides a new strategy for ZnO-based photocatalysis as a promising candidate for the treatment of various contaminants present in water bodies.


Asunto(s)
Cromo , Óxido de Zinc , Fotólisis , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Rifampin/toxicidad , Luz
8.
Front Microbiol ; 15: 1336334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419636

RESUMEN

In this study, we conducted tests on the isolation, identification, characterization, and extraction of chemical molecules from Beauveria bassiana against Tuta absoluta larvae. The enzyme responses of T. absoluta to the crude extract were examined 24 h after treatment, and the number of dead larvae was calculated 24 and 48 h after treatment. Molecular docking studies were conducted to assess the interaction of important molecules with the acetylcholinesterase enzyme. The larvicidal activity of crude chemicals from fungi was high 24 h after treatment, with LC50 and LC90 values of 25.937 and 33.559 µg/mL, respectively. For a period of 48 h, the LC50 and LC90 values were 52.254 and 60.450 µg/mL, respectively. The levels of acetylcholinesterase, α-carboxylesterase, and ß-carboxylesterase enzymes were lower in the treatment group after 24 h compared to the control group. The GC-MS test revealed that the crude extract consisted mainly of 9,10-octadecadienoic acid, which was the primary compound. Docking results indicated that 9,10-octadecadienoic acid showed a strong interaction with acetylcholinesterase (AChE). Our findings suggest that the chemical molecule 9,10-octadecadienoic acid derived from the entomopathogenic fungus B. bassiana is more toxic to T. absoluta larvae. We plan to conduct studies to test its effectiveness in semi-field conditions and to evaluate its stability in field conditions. We believe that this 9,10-octadecadienoic acid molecule could be used to control T. absoluta larvae in the near future without causing environmental pollution.

9.
Environ Sci Pollut Res Int ; 31(17): 24836-24850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456983

RESUMEN

Chromium (Cr) contamination in soil-plant systems poses a pressing environmental challenge due to its detrimental impacts on plant growth and human health. Results exhibited that Cr stress decreased shoot biomass, root biomass, leaf relative water content, and plant height. However, single and co-application of Bacillus subtilis (BS) and arbuscular mycorrhizal fungi (AMF) considerably enhanced shoot biomass (+ 21%), root biomass (+ 2%), leaf relative water content (+ 26%), and plant height (+ 13) under Cr stress. The frequency of mycorrhizal (F) association (+ 5%), mycorrhizal colonization (+ 13%), and abundance of arbuscules (+ 5%) in the non-stressed soil was enhanced when inoculated with combined BS and AMF as compared to Cr-stressed soil. The co-inoculation with BS and AMF considerably enhanced total chlorophyll, carotenoids, and proline content in Cr-stressed plants. Cr-stressed plants resulted in attenuated response in SOD, POD, CAT, and GR activities when inoculated with BS and AMF consortia by altering oxidative stress biomarkers (H2O2 and MDA). In Cr-stressed plants, the combined application of BS and AMF considerably enhanced proline metabolism, for instance, P5CR (+ 17%), P5CS (+ 28%), OAT (- 22%), and ProDH (- 113%) as compared to control. Sole inoculation with AMF downregulated the expression of SIPIP2;1, SIPIP2;5, and SIPIP2;7 in Cr-stressed plants. However, the expression of NCED1 was downregulated with the application of sole AMF. In contrast, the relative expression of Le4 was upregulated in the presence of AMF and BS combination in Cr-stressed plants. Therefore, it is concluded that co-application of BS and AMF enhanced Cr tolerance by enhancing proline metabolism, antioxidant enzymes, and aquaporin gene expression. Future study might concentrate on elucidating the molecular processes behind the synergistic benefits of BS and AMF, as well as affirming their effectiveness in field experiments under a variety of environmental situations. Long-term research on the effect of microbial inoculation on soil health and plant production might also help to design sustainable chromium remediation solutions.


Asunto(s)
Micorrizas , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cromo , Peróxido de Hidrógeno/metabolismo , Micorrizas/fisiología , Bacterias/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Suelo , Agua , Expresión Génica , Raíces de Plantas/metabolismo
10.
Sci Rep ; 14(1): 14026, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890414

RESUMEN

The excessive accumulation of sodium chloride (NaCl) in soil can result in soil salinity, which poses a significant challenge to plant growth and crop production due to impaired water and nutrient uptake. On the other hand, hydropriming (WP) and low level of NaCl priming can improve the germination of seeds, chlorophyll contents, oil and seed yield in plants. That's why this study investigates the impact of hydro and different levels of NaCl (0.5, 1.0, 1.5 and 2.0%) priming, as pre-treatment techniques on canola seeds germination, growth and yield of two varieties Punjab and Faisal Canola. Results showed that, WP performed significant best for increase in germination (~ 20 and ~ 22%) and shoot length (~ 6 and ~ 10%) over non-priming (NP) in Punjab Canola and Faisal Canola respectively. A significant increase in plant height (~ 6 and ~ 7%), root length (~ 1 and ~ 7%), shoot fresh weight (~ 5 and ~ 7%), root fresh weight (~ 6 and ~ 7%) in Punjab Canola and Faisal Canola respectively. It was also observed that plants under WP and 0.5%NaCl priming were also better in production of seed yield per plant, oil contents, silique per plant, seeds per silique, and branches per plant chlorophyll contents and leaf relative water contents over NP. In conclusion, WP and 0.5%NaCl has potential to improve the germination, growth, yield and oil attributes of canola compared to non-priming, 1.0%NaCl priming, 1.5%NaCl priming and 2.0%NaCl priming.


Asunto(s)
Brassica napus , Germinación , Semillas , Cloruro de Sodio , Germinación/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Brassica napus/efectos de los fármacos , Cloruro de Sodio/farmacología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/efectos de los fármacos , Clorofila/metabolismo , Agua/metabolismo , Salinidad , Suelo/química
11.
J Clin Med ; 13(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124760

RESUMEN

Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant oral cancer KB-Chr-8-5 cells through inhibition of the EGFR/PI3K/Akt/NF-κB signaling pathway. Methods: Cell viability was assessed using an MTT assay to evaluate cytotoxic effects. Production of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨM), and AO/EtBr staining were analyzed to assess apoptosis and mitochondrial dysfunction. Western blotting was employed to examine protein expression related to angiogenesis, apoptosis, and signaling pathways. Experiments were conducted in triplicate. Results: Solanine treatment at concentrations of 10, 20, and 30 µM significantly increased ROS production, which is indicative of its antioxidant properties. This increase was associated with decreased mitochondrial membrane potential (ΔΨM) with p < 0.05, suggesting mitochondrial dysfunction. Inhibition of EGFR led to reduced activity of PI3K, Akt, and NF-κB, resulting in decreased expression of iNOS, IL-6, Cyclin D1, PCNA, VEGF, Mcl-1, and HIF-1α and increased levels of the apoptotic proteins Bax, caspase-9, and caspase-3. These changes collectively inhibited the growth of multidrug-resistant (MDR) cancer cells. Conclusions: Solanine acts as a potent disruptor of cellular processes by inhibiting the EGFR-mediated PI3K/Akt/NF-κB signaling pathway. These results suggest that solanine holds promise as a potential preventive or therapeutic agent against multidrug-resistant cancers.

12.
Sci Rep ; 14(1): 19081, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154113

RESUMEN

The plant-available soil phosphorus rate and methods for applying phosphatic fertilizer and soil P-fixation capacity are critical factors for lower cotton productivity in Southern Punjab, Pakistan. Hence, a two-year study was conducted in Central Cotton Research Institute (CCRI), Multan, Pakistan, to examine the effects of various P rates and application methods on cotton crop output during the growing seasons of 2014 and 2015. Phosphorus was applied in four rates (0, 40, 80, and 120 kg ha-1 P2O5) using broadcast, band application, and fertigation methods. Results indicated that the impact of P rates was statistically significant on plant height, the number of nodes, monopodial and sympodial branches, leaf area index, harvest index, and seed cotton yield. The greater P application (120 kg P2O5 ha-1) had a better effect on cotton productivity than the lower application rates (0, 40, and 80 kg P2O5 ha-1). The band application responded better on nodes plant-1, sympodial branches plant-1, boll weight, leaf area index, lint yield, and harvest during the growing season 2015. Therefore, by adopting the band application coupled with 120 kg P2O5 ha-1 rather than the conventional method of broadcast, productivity of cotton crops could be increased.

13.
Heliyon ; 10(7): e28296, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560133

RESUMEN

The current study was designed to investigate the consequences of rice cooking and soaking of cooked rice (CR) with or without arsenic (As) contaminated water on As and Fe (iron) transfer to the human body along with associated health risk assessment using additive main-effects and multiplicative interaction (AMMI) and Monte Carlo Simulation model. In comparison to raw rice, As content in cooked rice (CR) and soaked cooked rice (SCR) enhanced significantly (at p < 0.05 level), regardless of rice cultivars and locations (at p < 0.05 level) due to the use of As-rich water for cooking and soaking purposes. Whereas As content in CR and SCR was reduced significantly due to the use of As-free water for cooking and soaking purposes. The use of As-free water (AFW) also enhanced the Fe content in CR. The overnight soaking of rice invariably enhanced the Fe content despite the use of As-contaminated water in SCR however, comparatively in lesser amount than As-free rice. In the studied area, due to consumption of As-rich CR and SCR children are more vulnerable to health hazards than adults. Consumption of SCR (prepared with AFW) could be an effective method to minimize As transmission and Fe enrichment among consumers.

14.
Heliyon ; 10(15): e35173, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166046

RESUMEN

Heavy metal ions pose significant risks to human health, pelagic, and several other life forms due to perniciousness, tendency to accumulate, and resistance to biodegradation. Waste bio-materials extend a budding alternative as low-cost adsorbent to address the removal of noxious pollutants from wastewater on account of being cost-effective and exhibiting exceptional adsorption capacities. The current exploration was accomplished to gauge the performance of raw and modified human hair concerning lead scavenging in a down-flow fixed bed column. The appraisal of column performance under varying operational parameters encompassing bed height (15-45 cm), influent metal ion concentration (60-140 mg L-1), and a solution flow rate (20-40 mL min-1) was performed by breakthrough curve analysis. The consequences acquired were evaluated using the Yoon Nelson, Thomas, Adam-Bohart, and Bed Depth Service Time (BDST) model. Among these employed models, Bed Depth Service Time (BDST) and Thomas models exhibited the highest R-squared value compared to the Yoon Nelson and Adam-Bohart's model for most cases. In addition, the optimization of lead adsorption was followed using the Box-Behnken design of response surface methodology (RSM). The optimal conditions (desirability-1.00) for achieving a goal of maximum percent removal of lead ions were marked to be a bed height of 42.79 cm, solution flow rate of 20.92 mL min-1, and an initial metal concentration of 139.51 mg L-1. Under these optimized conditions, the percent amputation of lead in a fixed bed was observed to be 82.31 %, while the results of the experiment performed approximately under these optimized conditions revealed a percent removal of 85.05 %, reflecting a reasonable conformity with values acquired through Box-Behnken design.

15.
Front Biosci (Landmark Ed) ; 28(12): 340, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38179777

RESUMEN

BACKGROUND: Trachyspermum ammi is a frequently utilized traditional medicinal plant renowned for its pharmacological attributes, particularly in the realm of treating infectious diseases. This current study aims to comprehensively assess the in vitro properties of freshly prepared nanosuspensions derived from Trachyspermum ammi extracts, with a focus on their cost-effective potential in various areas, including antioxidant, antibacterial, cytotoxic, and antidiabetic activities. METHODS: Biochemical characterization of T. ammi nanosuspensions by high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR) analyses. RESULTS: HPLC analysis revealed the presence of kaempferol and sinapic acid in various amounts at 11.5 ppm and 12.3 ppm, respectively. FTIR analysis of T. ammi powder revealed the presence of alcohols and amines. The assessment of antioxidant activity was conducted using a DPPH scavenging assay, indicating that the nanosuspensions exhibited their highest free radical scavenging activity, reaching 14.9%. Nanosuspensions showed 3.75 ± 3.529.5% biofilm inhibition activity against Escherichia coli. The antidiabetic activity was accessed through antiglycation and α- amylase inhibition assays, while nanosuspension showed the maximum inhibition activity at 25.35 ± 0.912133% and 34.6 ± 1.3675%. Hemolytic activity was also evaluated, and T. ammi nanosuspension showed 22.73 ± 1.539% hemolysis. CONCLUSIONS: This nanotechnology approach has established a foundation to produce plant-based nanosuspensions, offering a promising avenue for the biopharmaceutical production of herbal nanomedicines. These nanosuspensions have the potential to enhance bioavailability and can serve as a viable alternative to synthetic formulations.


Asunto(s)
Ammi , Antineoplásicos , Apiaceae , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Apiaceae/química , Antibacterianos/farmacología , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA