Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(23): e113527, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846891

RESUMEN

Emergency granulopoiesis is the enhanced and accelerated production of granulocytes that occurs during acute infection. The contribution of hematopoietic stem cells (HSCs) to this process was reported; however, how HSCs participate in emergency granulopoiesis remains elusive. Here, using a mouse model of emergency granulopoiesis we observe transcriptional changes in HSCs as early as 4 h after lipopolysaccharide (LPS) administration. We observe that the HSC identity is changed towards a myeloid-biased HSC and show that CD201 is enriched in lymphoid-biased HSCs. While CD201 expression under steady-state conditions reveals a lymphoid bias, under emergency granulopoiesis loss of CD201 marks the lymphoid-to-myeloid transcriptional switch. Mechanistically, we determine that lymphoid-biased CD201+ HSCs act as a first response during emergency granulopoiesis due to direct sensing of LPS by TLR4 and downstream activation of NF-κΒ signaling. The myeloid-biased CD201- HSC population responds indirectly during an acute infection by sensing G-CSF, increasing STAT3 phosphorylation, and upregulating LAP/LAP* C/EBPß isoforms. In conclusion, HSC subpopulations support early phases of emergency granulopoiesis due to their transcriptional rewiring from a lymphoid-biased to myeloid-biased population and thus establishing alternative paths to supply elevated numbers of granulocytes.


Asunto(s)
Células Madre Hematopoyéticas , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Hematopoyesis , Granulocitos/metabolismo
2.
EMBO Rep ; 24(1): e54729, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36341527

RESUMEN

Chronic inflammation represents a major threat to human health since long-term systemic inflammation is known to affect distinct tissues and organs. Recently, solid evidence demonstrated that chronic inflammation affects hematopoiesis; however, how chronic inflammation affects hematopoietic stem cells (HSCs) on the mechanistic level is poorly understood. Here, we employ a mouse model of chronic multifocal osteomyelitis (CMO) to assess the effects of a spontaneously developed inflammatory condition on HSCs. We demonstrate that hematopoietic and nonhematopoietic compartments in CMO BM contribute to HSC expansion and impair their function. Remarkably, our results suggest that the typical features of murine multifocal osteomyelitis and the HSC phenotype are mechanistically decoupled. We show that the CMO environment imprints a myeloid gene signature and imposes a pro-inflammatory profile on HSCs. We identify IL-6 and the Jak/Stat3 signaling pathway as critical mediators. However, while IL-6 and Stat3 blockage reduce HSC numbers in CMO mice, only inhibition of Stat3 activity significantly rescues their fitness. Our data emphasize the detrimental effects of chronic inflammation on stem cell function, opening new venues for treatment.


Asunto(s)
Inflamación , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , Interleucina-6/metabolismo , Inflamación/metabolismo , Transducción de Señal , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Blood ; 136(22): 2574-2587, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32822472

RESUMEN

The canonical Wnt signaling pathway is mediated by interaction of ß-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of ß-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates ß-catenin-TCF/LEF interaction. Disruption of the ß-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of ß-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of ß-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the ß-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the ß-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.


Asunto(s)
Granulocitos/metabolismo , Mielopoyesis , Receptores del Factor Estimulante de Colonias/biosíntesis , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo , Animales , Candida albicans , Candidiasis/genética , Candidiasis/metabolismo , Ratones , Ratones Transgénicos , Receptores del Factor Estimulante de Colonias/genética , Factores de Transcripción TCF/genética , beta Catenina/genética
4.
Mol Cell ; 49(5): 934-46, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23395001

RESUMEN

To provide a lifelong supply of blood cells, hematopoietic stem cells (HSCs) need to carefully balance both self-renewing cell divisions and quiescence. Although several regulators that control this mechanism have been identified, we demonstrate that the transcription factor PU.1 acts upstream of these regulators. So far, attempts to uncover PU.1's role in HSC biology have failed because of the technical limitations of complete loss-of-function models. With the use of hypomorphic mice with decreased PU.1 levels specifically in phenotypic HSCs, we found reduced HSC long-term repopulation potential that could be rescued completely by restoring PU.1 levels. PU.1 prevented excessive HSC division and exhaustion by controlling the transcription of multiple cell-cycle regulators. Levels of PU.1 were sustained through autoregulatory PU.1 binding to an upstream enhancer that formed an active looped chromosome architecture in HSCs. These results establish that PU.1 mediates chromosome looping and functions as a master regulator of HSC proliferation.


Asunto(s)
Células Madre Adultas/metabolismo , Ciclo Celular/genética , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Células Madre Adultas/patología , Animales , Proliferación Celular , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Endogámicos , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo
5.
J Cell Mol Med ; 24(2): 1980-1992, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31845480

RESUMEN

WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4-family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l-deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hematopoyesis , Proteínas de la Membrana/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Animales , Células Germinativas/metabolismo , Glicoproteínas/metabolismo , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Humanos , Lipoilación , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Unión Proteica , ARN Interferente Pequeño/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
Nature ; 503(7476): 371-6, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24107992

RESUMEN

DNA methylation was first described almost a century ago; however, the rules governing its establishment and maintenance remain elusive. Here we present data demonstrating that active transcription regulates levels of genomic methylation. We identify a novel RNA arising from the CEBPA gene locus that is critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extend the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene-selective demethylation of therapeutic targets in human diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica/genética , ARN no Traducido/metabolismo , Secuencia de Bases , Línea Celular , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Perfilación de la Expresión Génica , Genoma Humano/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato , Transcripción Genética/genética
8.
J Biol Chem ; 292(46): 18924-18936, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28900037

RESUMEN

The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Células Mieloides/citología , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Activación Transcripcional , Secuencia de Bases , Línea Celular , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Humanos , Células Mieloides/metabolismo , Unión Proteica
9.
J Immunol ; 195(7): 3416-26, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26304991

RESUMEN

Mutations in the adaptor protein PSTPIP2 are the cause of the autoinflammatory disease chronic multifocal osteomyelitis in mice. This disease closely resembles the human disorder chronic recurrent multifocal osteomyelitis, characterized by sterile inflammation of the bones and often associated with inflammation in other organs, such as the skin. The most critical process in the disease's development is the enhanced production of IL-1ß. This excessive IL-1ß is likely produced by neutrophils. In addition, the increased activity of macrophages, osteoclasts, and megakaryocytes has also been described. However, the molecular mechanism of how PSTPIP2 deficiency results in this phenotype is poorly understood. Part of the PSTPIP2 inhibitory function is mediated by protein tyrosine phosphatases from the proline-, glutamic acid-, serine- and threonine-rich (PEST) family, which are known to interact with the central part of this protein, but other regions of PSTPIP2 not required for PEST-family phosphatase binding were also shown to be indispensable for PSTPIP2 function. In this article, we show that PSTPIP2 binds the inhibitory enzymes Csk and SHIP1. The interaction with SHIP1 is of particular importance because it binds to the critical tyrosine residues at the C terminus of PSTPIP2, which is known to be crucial for its PEST-phosphatase-independent inhibitory effects in different cellular systems. We demonstrate that in neutrophils this region is important for the PSTPIP2-mediated suppression of IL-1ß processing and that SHIP1 inhibition results in the enhancement of this processing. We also describe deregulated neutrophil response to multiple activators, including silica, Ab aggregates, and LPS, which is suggestive of a rather generalized hypersensitivity of these cells to various external stimulants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas del Citoesqueleto/inmunología , Osteomielitis/inmunología , Monoéster Fosfórico Hidrolasas/inmunología , Familia-src Quinasas/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Tirosina Quinasa CSK , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Inflamación/inmunología , Inositol Polifosfato 5-Fosfatasas , Interleucina-1beta/biosíntesis , Macrófagos/inmunología , Megacariocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Neutrófilos/inmunología , Osteoclastos/inmunología , Osteomielitis/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Unión Proteica , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/inmunología
10.
Genesis ; 54(3): 101-14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26864984

RESUMEN

The Wnt pathway plays a crucial role in self-renewal and differentiation of cells in the adult gut. In the present study, we revealed the functional consequences of inhibition of canonical Wnt signaling in the intestinal epithelium. The study was based on generation of a novel transgenic mouse strain enabling inducible expression of an N-terminally truncated variant of nuclear Wnt effector T cell factor 4 (TCF4). The TCF4 variant acting as a dominant negative (dn) version of wild-type (wt) TCF4 protein decreased transcription of ß-catenin-TCF4-responsive genes. Interestingly, suppression of Wnt/ß-catenin signaling affected asymmetric division of intestinal stem cells (ISCs) rather than proliferation. ISCs expressing the transgene underwent several rounds of division but lost their clonogenic potential and migrated out of the crypt. Expression profiling of crypt cells revealed that besides ISC-specific markers, the dnTCF4 production downregulated expression levels of epithelial genes produced in other crypt cells including markers of Paneth cells. Additionally, in Apc conditional knockout mice, dnTCF activation efficiently suppressed growth of Apc-deficient tumors. In summary, the generated mouse strain represents a convenient tool to study cell-autonomous inhibition of ß-catenin-Tcf-mediated transcription.


Asunto(s)
Mucosa Intestinal/citología , Intestino Delgado/citología , Células Madre/citología , Vía de Señalización Wnt , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular , División Celular , Proliferación Celular , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Transgénicos , Células Madre/metabolismo , Factor de Transcripción 4 , Transcripción Genética , beta Catenina/metabolismo
11.
EMBO J ; 30(19): 4059-70, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21873977

RESUMEN

The transcription factor RUNX1 is essential to establish the haematopoietic gene expression programme; however, the mechanism of how it activates transcription of haematopoietic stem cell (HSC) genes is still elusive. Here, we obtained novel insights into RUNX1 function by studying regulation of the human CD34 gene, which is expressed in HSCs. Using transgenic mice carrying human CD34 PAC constructs, we identified a novel downstream regulatory element (DRE), which is bound by RUNX1 and is necessary for human CD34 expression in long-term (LT)-HSCs. Conditional deletion of Runx1 in mice harbouring human CD34 promoter-DRE constructs abrogates human CD34 expression. We demonstrate by chromosome conformation capture assays in LT-HSCs that the DRE physically interacts with the human CD34 promoter. Targeted mutagenesis of RUNX binding sites leads to perturbation of this interaction and decreased human CD34 expression in LT-HSCs. Overall, our in vivo data provide novel evidence about the role of RUNX1 in mediating interactions between distal and proximal elements of the HSC gene CD34.


Asunto(s)
Antígenos CD34/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Animales , Trasplante de Médula Ósea , Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Sangre Fetal/citología , Genotipo , Células HL-60 , Humanos , Ratones , Ratones Transgénicos , Modelos Biológicos , Secuencias Reguladoras de Ácidos Nucleicos/genética
12.
Haematologica ; 99(4): 697-705, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24162792

RESUMEN

C/EPBα proteins, encoded by the CCAAT-enhancer-binding protein α gene, play a crucial role in granulocytic development, and defects in this transcription factor have been reported in acute myeloid leukemia. Here, we defined the C/EBPα signature characterized by a set of genes up-regulated upon C/EBPα activation. We analyzed expression of the C/EBPα signature in a cohort of 525 patients with acute myeloid leukemia and identified a subset characterized by low expression of this signature. We referred to this group of patients as the C/EBPα dysfunctional subset. Remarkably, a large percentage of samples harboring C/EBPα biallelic mutations clustered within this subset. We hypothesize that re-activation of the C/EBPα signature in the C/EBPα dysfunctional subset could have therapeutic potential. In search for small molecules able to reverse the low expression of the C/EBPα signature we applied the connectivity map. This analysis predicted positive connectivity between the C/EBPα activation signature and histone deacetylase inhibitors. We showed that these inhibitors reactivate expression of the C/EBPα signature and promote granulocytic differentiation of primary samples from the C/EBPα dysfunctional subset harboring biallelic C/EBPα mutations. Altogether, our study identifies histone deacetylase inhibitors as potential candidates for the treatment of certain leukemias characterized by down-regulation of the C/EBPα signature.


Asunto(s)
Antineoplásicos/farmacología , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transcriptoma , Proteína alfa Potenciadora de Unión a CCAAT/genética , Diferenciación Celular , Línea Celular Tumoral , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Mutación/efectos de los fármacos , Mutación/genética , Activación Transcripcional
13.
Front Immunol ; 15: 1376629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715613

RESUMEN

ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.


Asunto(s)
Eliminación de Gen , Homeostasis , Proteínas de la Membrana , Animales , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingolípidos/metabolismo , Bazo/inmunología , Bazo/metabolismo
14.
Development ; 137(13): 2147-56, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20530543

RESUMEN

Coactivator-associated arginine methyltransferase I (CARM1; PRMT4) regulates gene expression by multiple mechanisms including methylation of histones and coactivation of steroid receptor transcription. Mice lacking CARM1 are small, fail to breathe and die shortly after birth, demonstrating the crucial role of CARM1 in development. In adults, CARM1 is overexpressed in human grade-III breast tumors and prostate adenocarcinomas, and knockdown of CARM1 inhibits proliferation of breast and prostate cancer cell lines. Based on these observations, we hypothesized that loss of CARM1 in mouse embryos would inhibit pulmonary cell proliferation, resulting in respiratory distress. By contrast, we report here that loss of CARM1 results in hyperproliferation of pulmonary epithelial cells during embryonic development. The lungs of newborn mice lacking CARM1 have substantially reduced airspace compared with their wild-type littermates. In the absence of CARM1, alveolar type II cells show increased proliferation. Electron microscopic analyses demonstrate that lungs from mice lacking CARM1 have immature alveolar type II cells and an absence of alveolar type I cells. Gene expression analysis reveals a dysregulation of cell cycle genes and markers of differentiation in the Carm1 knockout lung. Furthermore, there is an overlap in gene expression in the Carm1 knockout and the glucocorticoid receptor knockout lung, suggesting that hyperproliferation and lack of maturation of the alveolar cells are at least in part caused by attenuation of glucocorticoid-mediated signaling. These results demonstrate for the first time that CARM1 inhibits pulmonary cell proliferation and is required for proper differentiation of alveolar cells.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Proliferación Celular , Células Endoteliales/metabolismo , Glucocorticoides/metabolismo , Ratones , Alveolos Pulmonares/metabolismo , Transcripción Genética
15.
Blood ; 117(3): 827-38, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21063029

RESUMEN

Endocannabinoids are arachidonic acid derivatives and part of a novel bioactive lipid signaling system, along with their G-coupled cannabinoid receptors (CB1 and CB2) and the enzymes involved in their biosynthesis and degradation. However, their roles in hematopoiesis and hematopoietic stem and progenitor cell (HSPC) functions are not well characterized. Here, we show that bone marrow stromal cells express endocannabinoids (anandamide and 2-arachidonylglycerol), whereas CB2 receptors are expressed in human and murine HSPCs. On ligand stimulation with CB2 agonists, CB2 receptors induced chemotaxis, migration, and enhanced colony formation of bone marrow cells, which were mediated via ERK, PI3-kinase, and Gαi-Rac1 pathways. In vivo, the CB2 agonist AM1241 induced mobilization of murine HSPCs with short- and long-term repopulating abilities. In addition, granulocyte colony-stimulating factor -induced mobilization of HSPCs was significantly decreased by specific CB2 antagonists and was impaired in Cnr2(-/-) cannabinoid type 2 receptor knockout mice. Taken together, these results demonstrate that the endocannabinoid system is involved in hematopoiesis and that CB2/CB2 agonist axis mediates repopulation of hematopoiesis and mobilization of HSPCs. Thus, CB2 agonists may be therapeutically applied in clinical conditions, such as bone marrow transplantation.


Asunto(s)
Hematopoyesis/fisiología , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/fisiología , Receptor Cannabinoide CB2/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Cannabinoides/farmacología , Movimiento Celular/efectos de los fármacos , Ciclohexanoles/farmacología , Femenino , Citometría de Flujo , Hematopoyesis/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/genética , Células del Estroma/metabolismo
17.
Exp Hematol ; 128: 30-37, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37709251

RESUMEN

Acute myeloid leukemia (AML) is a malignant neoplasia of the hematopoietic system characterized by the accumulation of immature and nonfunctional leukemic blasts in the bone marrow and peripheral tissues. Mechanistically, the development of AML is explained by the "two-hit" theory, which is based on the accumulation of driver mutations that will cooperate to induce transformation. However, a significant percentage of patients with AML exhibit only one driver mutation, and thus, how leukemic transformation occurs in these cases is unclear. Accumulating evidence suggests that nongenetic factors, such as chronic inflammation, might influence AML development, and accordingly, clinical data have reported that patients with chronic inflammatory disorders have an increased risk of developing hematological malignancies. Here, using a mouse model of chronic inflammation, we demonstrate that systemic elevated levels of cytokines and chemokines and hyperactivation of the Jak/Stat3 signaling pathway may substitute "second hit" mutations and accelerate tumorigenesis. Altogether, our data highlight chronic inflammation as an additional factor in the development of AML, providing additional understanding of the mechanisms of transformation and opening new avenues for the treatment of this disease.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Médula Ósea/patología , Transformación Celular Neoplásica/genética , Inflamación
18.
Leukemia ; 37(11): 2209-2220, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709843

RESUMEN

Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Animales , Ratones , Proliferación Celular , Daño del ADN , Leucemia Mieloide Aguda/genética , Mutación , Proteína p53 Supresora de Tumor/genética
19.
Nat Struct Mol Biol ; 29(12): 1148-1158, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36482255

RESUMEN

Enhancers play a central role in the spatiotemporal control of gene expression and tend to work in a cell-type-specific manner. In addition, they are suggested to be major contributors to phenotypic variation, evolution and disease. There is growing evidence that enhancer dysfunction due to genetic, structural or epigenetic mechanisms contributes to a broad range of human diseases referred to as enhanceropathies. Such mechanisms often underlie the susceptibility to common diseases, but can also play a direct causal role in cancer or Mendelian diseases. Despite the recent gain of insights into enhancer biology and function, we still have a limited ability to predict how enhancer dysfunction impacts gene expression. Here we discuss the major challenges that need to be overcome when studying the role of enhancers in disease etiology and highlight opportunities and directions for future studies, aiming to disentangle the molecular basis of enhanceropathies.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , Humanos , Elementos de Facilitación Genéticos/genética
20.
Commun Biol ; 5(1): 961, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104445

RESUMEN

The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.


Asunto(s)
Hematopoyesis , Factor de Transcripción AP-1 , Animales , Sitios de Unión , Diferenciación Celular/genética , Hematopoyesis/genética , Ratones , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-jun , Factor de Transcripción AP-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA