Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(4): 945-961.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320550

RESUMEN

DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.


Asunto(s)
Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Humanos
2.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32359423

RESUMEN

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/fisiología , Expresión Génica/genética , Genes Esenciales/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
3.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302572

RESUMEN

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformación de Ácido Nucleico , Orgánulos/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
4.
Cell ; 176(3): 419-434, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682370

RESUMEN

Evidence is now mounting that liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in cells. This realization has motivated major efforts to delineate the function of such biomolecular condensates in normal cells and their roles in contexts ranging from development to age-related disease. There is great interest in understanding the underlying biophysical principles and the specific properties of biological condensates with the goal of bringing insights into a wide range of biological processes and systems. The explosion of physiological and pathological contexts involving LLPS requires clear standards for their study. Here, we propose guidelines for rigorous experimental characterization of LLPS processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.


Asunto(s)
Microextracción en Fase Líquida/métodos , Extracción Líquido-Líquido/métodos , Extracción Líquido-Líquido/tendencias , Fenómenos Fisiológicos Celulares/fisiología
5.
Nat Rev Mol Cell Biol ; 22(3): 196-213, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33510441

RESUMEN

Biomolecular condensates are membraneless intracellular assemblies that often form via liquid-liquid phase separation and have the ability to concentrate biopolymers. Research over the past 10 years has revealed that condensates play fundamental roles in cellular organization and physiology, and our understanding of the molecular principles, components and forces underlying their formation has substantially increased. Condensate assembly is tightly regulated in the intracellular environment, and failure to control condensate properties, formation and dissolution can lead to protein misfolding and aggregation, which are often the cause of ageing-associated diseases. In this Review, we describe the mechanisms and regulation of condensate assembly and dissolution, highlight recent advances in understanding the role of biomolecular condensates in ageing and disease, and discuss how cellular stress, ageing-related loss of homeostasis and a decline in protein quality control may contribute to the formation of aberrant, disease-causing condensates. Our improved understanding of condensate pathology provides a promising path for the treatment of protein aggregation diseases.


Asunto(s)
Envejecimiento , Sustancias Macromoleculares/química , Complejos Multiproteicos/fisiología , Agregación Patológica de Proteínas/etiología , Estrés Fisiológico/fisiología , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Fenómenos Fisiológicos Celulares , Humanos , Sustancias Macromoleculares/metabolismo , Agregado de Proteínas/fisiología , Agregación Patológica de Proteínas/metabolismo
6.
Cell ; 174(3): 688-699.e16, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961577

RESUMEN

Proteins such as FUS phase separate to form liquid-like condensates that can harden into less dynamic structures. However, how these properties emerge from the collective interactions of many amino acids remains largely unknown. Here, we use extensive mutagenesis to identify a sequence-encoded molecular grammar underlying the driving forces of phase separation of proteins in the FUS family and test aspects of this grammar in cells. Phase separation is primarily governed by multivalent interactions among tyrosine residues from prion-like domains and arginine residues from RNA-binding domains, which are modulated by negatively charged residues. Glycine residues enhance the fluidity, whereas glutamine and serine residues promote hardening. We develop a model to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues. These results suggest it is possible to predict phase-separation properties based on amino acid sequences.


Asunto(s)
Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/fisiología , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Arginina/química , Simulación por Computador , Células HeLa , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Transición de Fase , Proteínas Priónicas/química , Proteínas Priónicas/genética , Priones/genética , Priones/fisiología , Dominios Proteicos , Proteína FUS de Unión a ARN/fisiología , Proteínas de Unión al ARN/aislamiento & purificación , Células Sf9 , Tirosina/química
7.
Cell ; 168(6): 947-948, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283065

RESUMEN

Stress conditions trigger protein assembly by demixing from the cytoplasm, but the biological significance is still unclear. In this issue of Cell, Riback et al. report that the yeast poly(A)-binding protein 1 (Pab1) is a phase-separating stress sensor that boosts organismal fitness under physiological stress conditions.


Asunto(s)
Proteína I de Unión a Poli(A)/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas/metabolismo
8.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547866

RESUMEN

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Respuesta al Choque Térmico , Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , ARN Mensajero , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Respuesta al Choque Térmico/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Unión Proteica , ARN de Hongos/metabolismo , ARN de Hongos/genética
9.
Cell ; 166(3): 637-650, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27471966

RESUMEN

Most vertebrate oocytes contain a Balbiani body, a large, non-membrane-bound compartment packed with RNA, mitochondria, and other organelles. Little is known about this compartment, though it specifies germline identity in many non-mammalian vertebrates. We show Xvelo, a disordered protein with an N-terminal prion-like domain, is an abundant constituent of Xenopus Balbiani bodies. Disruption of the prion-like domain of Xvelo, or substitution with a prion-like domain from an unrelated protein, interferes with its incorporation into Balbiani bodies in vivo. Recombinant Xvelo forms amyloid-like networks in vitro. Amyloid-like assemblies of Xvelo recruit both RNA and mitochondria in binding assays. We propose that Xenopus Balbiani bodies form by amyloid-like assembly of Xvelo, accompanied by co-recruitment of mitochondria and RNA. Prion-like domains are found in germ plasm organizing proteins in other species, suggesting that Balbiani body formation by amyloid-like assembly could be a conserved mechanism that helps oocytes function as long-lived germ cells.


Asunto(s)
Amiloide/metabolismo , Biogénesis de Organelos , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Benzotiazoles , Femenino , Colorantes Fluorescentes , Mitocondrias/metabolismo , Oocitos/citología , Orgánulos/metabolismo , Priones/química , Dominios Proteicos , Transporte de Proteínas , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Sf9 , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/genética , Tiazoles , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis , Pez Cebra
10.
Cell ; 162(5): 1066-77, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317470

RESUMEN

Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.


Asunto(s)
Envejecimiento/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Mutación , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/química , Citoplasma/química , Humanos , Priones/química , Agregado de Proteínas , Estructura Terciaria de Proteína , Proteína FUS de Unión a ARN/metabolismo
11.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36150385

RESUMEN

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Asunto(s)
Interferón Tipo I , ARN Bicatenario , Antivirales , Enfermedades Autoinmunes del Sistema Nervioso , Exonucleasas/genética , Humanos , Inmunidad Innata/genética , Interferón Tipo I/genética , Malformaciones del Sistema Nervioso , ARN Bicatenario/genética , Proteína 1 que Contiene Dominios SAM y HD/genética
12.
Mol Cell ; 79(1): 54-67.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32521226

RESUMEN

Exposure of cells to heat or oxidative stress causes misfolding of proteins. To avoid toxic protein aggregation, cells have evolved nuclear and cytosolic protein quality control (PQC) systems. In response to proteotoxic stress, cells also limit protein synthesis by triggering transient storage of mRNAs and RNA-binding proteins (RBPs) in cytosolic stress granules (SGs). We demonstrate that the SUMO-targeted ubiquitin ligase (StUbL) pathway, which is part of the nuclear proteostasis network, regulates SG dynamics. We provide evidence that inactivation of SUMO deconjugases under proteotoxic stress initiates SUMO-primed, RNF4-dependent ubiquitylation of RBPs that typically condense into SGs. Impairment of SUMO-primed ubiquitylation drastically delays SG resolution upon stress release. Importantly, the StUbL system regulates compartmentalization of an amyotrophic lateral sclerosis (ALS)-associated FUS mutant in SGs. We propose that the StUbL system functions as surveillance pathway for aggregation-prone RBPs in the nucleus, thereby linking the nuclear and cytosolic axis of proteotoxic stress response.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Núcleo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Esclerosis Amiotrófica Lateral/genética , Núcleo Celular/genética , Células HeLa , Respuesta al Choque Térmico , Humanos , Mutación , Proteínas Nucleares/genética , Proteolisis , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , Proteína SUMO-1/genética , Sumoilación , Factores de Transcripción/genética , Ubiquitinación
13.
EMBO J ; 42(3): e111802, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574355

RESUMEN

The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin-proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule-deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO-targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule-deficient cells. Stress granule-deficient cells showed an increase in the formation of mutant ataxin-1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Gránulos de Estrés , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
14.
Annu Rev Genet ; 53: 171-194, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31430179

RESUMEN

We have made rapid progress in recent years in identifying the genetic causes of many human diseases. However, despite this recent progress, our mechanistic understanding of these diseases is often incomplete. This is a problem because it limits our ability to develop effective disease treatments. To overcome this limitation, we need new concepts to describe and comprehend the complex mechanisms underlying human diseases. Condensate formation by phase separation emerges as a new principle to explain the organization of living cells. In this review, we present emerging evidence that aberrant forms of condensates are associated with many human diseases, including cancer, neurodegeneration, and infectious diseases. We examine disease mechanisms driven by aberrant condensates, and we point out opportunities for therapeutic interventions. We conclude that phase separation provides a useful new framework to understand and fight some of the most severe human diseases.


Asunto(s)
Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Orgánulos/química , Proteínas/química , Proteínas/metabolismo , Humanos , Infecciones/patología , Orgánulos/metabolismo , Orgánulos/patología , Solubilidad
15.
Mol Cell ; 69(3): 349-351, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395058

RESUMEN

The molecular interactions driving the formation of stress-inducible granules have largely remained unknown. In two recent papers, Youn et al. (2018) and Markmiller et al. (2018) use proximity labeling proteomics to map out the protein interactome of stress-inducible ribonucleoprotein granules.


Asunto(s)
Proteómica , ARN Mensajero , Proteínas , Sociología
16.
Proc Natl Acad Sci U S A ; 119(28): e2202222119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787038

RESUMEN

Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation are thought to follow the tenets of classical nucleation theory, and, therefore, subsaturated solutions should be devoid of clusters with more than a few molecules. We tested this prediction using in vitro biophysical studies to characterize subsaturated solutions of phase-separating RNA-binding proteins with intrinsically disordered prion-like domains and RNA-binding domains. Surprisingly, and in direct contradiction to expectations from classical nucleation theory, we find that subsaturated solutions are characterized by the presence of heterogeneous distributions of clusters. The distributions of cluster sizes, which are dominated by small species, shift continuously toward larger sizes as protein concentrations increase and approach the saturation concentration. As a result, many of the clusters encompass tens to hundreds of molecules, while less than 1% of the solutions are mesoscale species that are several hundred nanometers in diameter. We find that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. We also find that cluster formation and phase separation can be decoupled using solutes as well as specific sets of mutations. Our findings, which are concordant with predictions for associative polymers, implicate an interplay between networks of sequence-specific and solubility-determining interactions that, respectively, govern cluster formation in subsaturated solutions and the saturation concentrations above which phase separation occurs.


Asunto(s)
Condensados Biomoleculares , Proteínas de Unión al ARN , Biofisica , Mutación , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética
17.
Cell ; 137(1): 146-58, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19345193

RESUMEN

Prions are proteins that convert between structurally and functionally distinct states, one or more of which is transmissible. In yeast, this ability allows them to act as non-Mendelian elements of phenotypic inheritance. To further our understanding of prion biology, we conducted a bioinformatic proteome-wide survey for prionogenic proteins in S. cerevisiae, followed by experimental investigations of 100 prion candidates. We found an unexpected amino acid bias in aggregation-prone candidates and discovered that 19 of these could also form prions. At least one of these prion proteins, Mot3, produces a bona fide prion in its natural context that increases population-level phenotypic heterogeneity. The self-perpetuating states of these proteins present a vast source of heritable phenotypic variation that increases the adaptability of yeast populations to diverse environments.


Asunto(s)
Priones/análisis , Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Secuencia de Aminoácidos , Amiloide/metabolismo , Asparagina/metabolismo , Citosol/metabolismo , Genoma Fúngico , Glutamina/metabolismo , Proteínas de Choque Térmico/metabolismo , Datos de Secuencia Molecular , Factores de Terminación de Péptidos , Fenotipo , Priones/química , Priones/genética , Priones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
18.
Mol Cell ; 63(5): 796-810, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570075

RESUMEN

Stress granules (SGs) are ribonucleoprotein complexes induced by stress. They sequester mRNAs and disassemble when the stress subsides, allowing translation restoration. In amyotrophic lateral sclerosis (ALS), aberrant SGs cannot disassemble and therefore accumulate and are degraded by autophagy. However, the molecular events causing aberrant SG formation and the molecular players regulating this transition are largely unknown. We report that defective ribosomal products (DRiPs) accumulate in SGs and promote a transition into an aberrant state that renders SGs resistant to RNase. We show that only a minor fraction of aberrant SGs is targeted by autophagy, whereas the majority disassembles in a process that requires assistance by the HSPB8-BAG3-HSP70 chaperone complex. We further demonstrate that HSPB8-BAG3-HSP70 ensures the functionality of SGs and restores proteostasis by targeting DRiPs for degradation. We propose a system of chaperone-mediated SG surveillance, or granulostasis, which regulates SG composition and dynamics and thus may play an important role in ALS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Arsenitos/farmacología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/efectos de los fármacos , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Células HeLa , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Leupeptinas/farmacología , Chaperonas Moleculares , Estrés Oxidativo , Inhibidores de Proteasoma/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Ribosomas/genética
19.
J Am Chem Soc ; 145(28): 15188-15196, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37411010

RESUMEN

Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Agregado de Proteínas , Humanos , Proteínas de Choque Térmico Pequeñas/metabolismo , Mutación , Pliegue de Proteína
20.
EMBO J ; 38(15): e101341, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271238

RESUMEN

Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation-prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid-liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress-inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival.


Asunto(s)
Núcleo Celular/metabolismo , Inestabilidad Genómica , Ribosomas/metabolismo , Ubiquitina/metabolismo , Núcleo Celular/genética , Reparación del ADN , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA