Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(51): E10928-E10936, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203676

RESUMEN

Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 (Strip1) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1-null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Desarrollo Embrionario , Mesodermo/metabolismo , Complejos Multiproteicos/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/genética , Movimiento Celular , Desarrollo Embrionario/genética , Mesodermo/citología , Mesodermo/embriología , Ratones , Morfogénesis/genética , Mutación , Fenotipo
2.
PLoS Genet ; 11(10): e1005551, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496195

RESUMEN

Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.


Asunto(s)
Proteínas del Ojo/genética , Glucosiltransferasas/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptor Notch1/metabolismo , Animales , Embrión de Mamíferos , Desarrollo Embrionario , Proteínas del Ojo/metabolismo , Gastrulación/genética , Glucosiltransferasas/metabolismo , Glicosilación , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Procesamiento Proteico-Postraduccional/genética , Receptor Notch1/genética , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 108(21): 8692-7, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555575

RESUMEN

Axin proteins are key negative regulators of the canonical Wnt signal transduction pathway. Although Axin2 null mice are viable, we identified an unusual ENU-induced recessive allele of Axin2, canp, that causes midgestation lethality in homozygotes. We show that the Axin2(canp) mutation is a V26D substitution in an invariant N-terminal sequence motif and that the Axin2(canp) protein is more stable than wild type. As predicted for an increased level of a negative regulator, the Axin2(canp) mutation leads to decreased Wnt signaling in most tissues, and this can account for most of the morphological phenotypes of Axin2(canp) mutants. In contrast, there is a paradoxical increase in canonical Wnt activity in the late primitive streak of all Axin2(canp) mutant embryos that is associated with the formation of an ectopic tail in some mutants. Treatment of wild-type embryos with an inhibitor of Tankyrase that stabilizes Axin proteins also causes inhibition of Wnt signaling in anterior regions of the embryo and a gain of Wnt signaling in the primitive streak. The results indicate that although increased stability of Axin2 leads to a loss of canonical Wnt signaling in most tissues, stabilized Axin2 enhances Wnt pathway activity in a specific progenitor population in the late primitive streak.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/agonistas , Proteínas Wnt/antagonistas & inhibidores , Animales , Proteína Axina , Proteínas del Citoesqueleto/genética , Embrión de Mamíferos , Ratones , Mutación , Especificidad de Órganos , Estabilidad Proteica
4.
Nat Genet ; 35(3): 215-7, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14528307

RESUMEN

To address the biological function of RNA interference (RNAi)-related pathways in mammals, we disrupted the gene Dicer1 in mice. Loss of Dicer1 lead to lethality early in development, with Dicer1-null embryos depleted of stem cells. Coupled with our inability to generate viable Dicer1-null embryonic stem (ES) cells, this suggests a role for Dicer, and, by implication, the RNAi machinery, in maintaining the stem cell population during early mouse development.


Asunto(s)
Desarrollo Embrionario y Fetal/fisiología , Endorribonucleasas/fisiología , ARN Helicasas/fisiología , Secuencia de Aminoácidos , Animales , ARN Helicasas DEAD-box , Endorribonucleasas/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , ARN Helicasas/genética , Interferencia de ARN , Ribonucleasa III , Células Madre/citología
5.
Biol Open ; 11(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35876795

RESUMEN

Formation of a properly sized and patterned embryo during gastrulation requires a well-coordinated interplay between cell proliferation, lineage specification and tissue morphogenesis. Following transient physical or pharmacological manipulations of embryo size, pre-gastrulation mouse embryos show remarkable plasticity to recover and resume normal development. However, it remains unclear how mechanisms driving lineage specification and morphogenesis respond to defects in cell proliferation during and after gastrulation. Null mutations in DNA replication or cell-cycle-related genes frequently lead to cell-cycle arrest and reduced cell proliferation, resulting in developmental arrest before the onset of gastrulation; such early lethality precludes studies aiming to determine the impact of cell proliferation on lineage specification and morphogenesis during gastrulation. From an unbiased ENU mutagenesis screen, we discovered a mouse mutant, tiny siren (tyrn), that carries a hypomorphic mutation producing an aspartate to tyrosine (D939Y) substitution in Pold1, the catalytic subunit of DNA polymerase δ. Impaired cell proliferation in the tyrn mutant leaves anterior-posterior patterning unperturbed during gastrulation but results in reduced embryo size and severe morphogenetic defects. Our analyses show that the successful execution of morphogenetic events during gastrulation requires that lineage specification and the ordered production of differentiated cell types occur in concordance with embryonic growth.


Asunto(s)
ADN Polimerasa III , Gastrulación , Animales , ADN Polimerasa III/genética , Embrión de Mamíferos , Gastrulación/genética , Ratones , Morfogénesis/genética , Mutación
6.
Curr Biol ; 12(18): 1628-32, 2002 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-12372258

RESUMEN

Precise patterning of cell types along the dorsal-ventral axis of the spinal cord is essential to establish functional neural circuits. In order to prove the feasibility of studying a single biological process through random mutagenesis in the mouse, we have identified recessive ENU-induced mutations in six genes that prevent normal specification of ventral cell types in the spinal cord. We positionally cloned the genes responsible for two of the mutant phenotypes, smoothened and dispatched, which are homologs of Drosophila Hh pathway components. The Dispatched homolog1 (Disp1) mutation causes lethality at midgestation and prevents specification of ventral cell types in the neural tube, a phenotype identical to the Smoothened (Smo) null phenotype. As in Drosophila, mouse Disp1 is required to move Shh away from the site of synthesis. Despite the existence of a second mouse disp homolog, Disp1 is essential for long-range signaling by both Shh and Ihh ligands. Our data indicate that Shh signaling is required within the notochord to maintain Shh expression and to prevent notochord degeneration. Disp1, unlike Smo, is not required for this juxtacrine signaling by Shh.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana/fisiología , Receptores Acoplados a Proteínas G , Transactivadores/fisiología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Drosophila , Desarrollo Embrionario y Fetal/genética , Proteínas Hedgehog , Hibridación in Situ , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Datos de Secuencia Molecular , Mutación , Fenotipo , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal , Receptor Smoothened , Transactivadores/deficiencia , Transactivadores/genética
7.
Cell Rep ; 9(2): 674-87, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25373905

RESUMEN

Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Polidactilia/genética , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Extremidades/crecimiento & desarrollo , Retroalimentación Fisiológica , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Polidactilia/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Development ; 134(21): 3789-94, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17913790

RESUMEN

Holoprosencephaly (HPE) is a devastating forebrain abnormality with a range of morphological defects characterized by loss of midline tissue. In the telencephalon, the embryonic precursor of the cerebral hemispheres, specialized cell types form a midline that separates the hemispheres. In the present study, deletion of the BMP receptor genes, Bmpr1b and Bmpr1a, in the mouse telencephalon results in a loss of all dorsal midline cell types without affecting the specification of cortical and ventral precursors. In the holoprosencephalic Shh(-/-) mutant, by contrast, ventral patterning is disrupted, whereas the dorsal midline initially forms. This suggests that two separate developmental mechanisms can underlie the ontogeny of HPE. The Bmpr1a;Bmpr1b mutant provides a model for a subclass of HPE in humans: midline inter-hemispheric HPE.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Holoprosencefalia/metabolismo , Mutación/genética , Transducción de Señal , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Encéfalo/embriología , Encéfalo/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoprosencefalia/embriología , Holoprosencefalia/genética , Masculino , Ratones , Ratones Transgénicos , Fenotipo
9.
Proc Natl Acad Sci U S A ; 102(17): 5913-9, 2005 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-15755804

RESUMEN

Many aspects of the genetic control of mammalian embryogenesis cannot be extrapolated from other animals. Taking a forward genetic approach, we have induced recessive mutations by treatment of mice with ethylnitrosourea and have identified 43 mutations that affect early morphogenesis and patterning, including 38 genes that have not been studied previously. The molecular lesions responsible for 14 mutations were identified, including mutations in nine genes that had not been characterized previously. Some mutations affect vertebrate-specific components of conserved signaling pathways; for example, at least five mutations affect previously uncharacterized regulators of the Sonic hedgehog (Shh) pathway. Approximately half of all of the mutations affect the initial establishment of the body plan, and several of these produce phenotypes that have not been described previously. A large fraction of the genes identified affect cell migration, cellular organization, and cell structure. The findings indicate that phenotype-based genetic screens provide a direct and unbiased method to identify essential regulators of mammalian development.


Asunto(s)
Ratones/embriología , Ratones/genética , Animales , Tipificación del Cuerpo , Mapeo Cromosómico , Genes Recesivos , Mamíferos , Morfogénesis , Mutación , Sistema Nervioso/embriología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA